Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc với BD tại H. Hãy tính chu vi và diện tích hình chữ nhật nếu biết:
a) AB = 24cm và AH = 12cm.
b) AB = 15cm và BH = 9cm.
c) AH = 12cm và \(\dfrac{BC}{CD}=\dfrac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha bạn
Xét tam giác ABD vuông tại A (ABCD là hình chứ nhật nên góc A = 90 độ)
Áp dụng hệ thức lượng trong tam giác vuông
\(\dfrac{1}{AD^2}+\dfrac{1}{AB^2}=\dfrac{1}{AH^2}\)
Thay số vào tính được AD = 15cm
Chu vi HCN = (20+15).2 = 70cm
Xét tam giác AHB vuông tại H có
\(AH^2+HB^2=AB^2\)( đl PYtago)
T/s \(12^2+HB^2=20^2\)
=>\(HB^2=20^2-12^2\)
=> \(HB^2=256\)
=> \(HB=16\)
Xét tam giác DAB vuông tại A có
\(AH^2=DH.HB\)
⇔ \(12^2=DH.16\)
=> \(DH=24\)
Xét tam giác AHD vuong tại H có
\(AH^2+DH^2=AD^2\)( đl Pyta go)
T/s \(12^2+24^2=AD^2\)
=> AD = \(12\sqrt{5}\)
Chu vi HCN ABCD là
( AB + AD ).2
= ( 20 +12\(\sqrt{5}\)).2
= 93,6 cm
Vây chu vi là 93,6 cm
BH=căn 10^2-6^2=8cm
=>BD=10^2/8=12,5cm
=>AD=7,5cm
S ABCD=7,5*10=75cm2
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:
\(AH^2=HB\cdot HD\left(1\right)\)
Ta có: \(\widehat{HDN}=\widehat{HBA}\)
\(\widehat{HMB}=\widehat{HBA}\left(=90^0-\widehat{BAH}\right)\)
Do đó: \(\widehat{HDN}=\widehat{HMB}\)
Xét ΔHDN vuông tại H và ΔHMB vuông tại H có
\(\widehat{HDN}=\widehat{HMB}\)
Do đó: ΔHDN\(\sim\)ΔHMB
Suy ra: \(\dfrac{HD}{HM}=\dfrac{HN}{HB}\)
hay \(HD\cdot HB=HM\cdot HN\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(HA^2=HM\cdot HN\)
Áp dụng định lý pitago: \(AC=\sqrt{12^2+9^2}=\sqrt{225}=15\left(cm\right)\)
Xét tam giác HBA và tam giác ABC, có:
\(\widehat{BHA}=\widehat{ABC}=90^o\)
\(\widehat{A}\): chung
Vậy tam giác HAB đồng dạng tam giác BAC ( g.g )
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AB}{AC}=\dfrac{HB}{BC}\)
\(\Rightarrow AH=\dfrac{AB^2}{AC}=\dfrac{12^2}{15}=9,6\left(cm\right)\)
\(\Rightarrow HB=\dfrac{AB.BC}{AC}=\dfrac{12.9}{15}=7,2\left(cm\right)\)
\(S_{AHB}=\dfrac{1}{2}.AH.HB=\dfrac{1}{2}.9,6.7,2=34,56\left(cm^2\right)\)
a,
Xét Δ HBA và Δ BAC, có :
\(\widehat{BHA}=\widehat{ABC}=90^o\)
\(\widehat{ABH}=\widehat{CAB}\) (cùng phụ \(\widehat{ABC}\))
=> Δ HBA ~ Δ BAC (g.g)
a: Xét ΔABH vuông tại H có sin ABH=AH/AB=1/2
nên góc ABH=30 độ
Xét ΔABD vuông tại A có \(AD=AB\cdot\tan30^0=8\sqrt{3}\left(cm\right)\)
\(C=\left(24+8\sqrt{3}\right)\cdot2=48+16\sqrt{3}\left(cm\right)\)
\(S=AB\cdot AD=8\sqrt{3}\cdot24=192\sqrt{3}\left(cm^2\right)\)
b: \(BD=\dfrac{15^2}{9}=25\left(cm\right)\)
\(AD=\sqrt{25^2-15^2}=20\left(cm\right)\)
\(C=\left(AB+AD\right)\cdot2=\left(15+20\right)\cdot2=70\left(cm\right)\)
\(S=15\cdot20=300\left(cm^2\right)\)
c: AD/AB=3/4
nên HD/HB=9/16
Đặt HD/9=HB/16=k
=>HD=9k; HB=16k
Ta có: \(AH^2=HD\cdot HB\)
\(\Leftrightarrow144k^2=144\)
=>k=1
=>HD=9cm; HB=16cm
\(BD=9+16=25\left(cm\right)\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AB=\sqrt{16\cdot25}=20\left(cm\right)\)
\(C=\left(15+20\right)\cdot2=70\left(cm\right)\)
\(S=15\cdot20=300\left(cm^2\right)\)