Đề bài: Tìm GTLN của biểu thức: ( theo hằng đẳng thức đáng nhớ )
1. -x mũ 2 - 2x - 2
2. -4x mũ 2 + 12x + 10
3. -x mũ 2 - 4x
4. -x mũ 2 + 6x - 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)=-\left(x+1\right)^2-1< =-1\)
Dấu '=' xảy ra khi x=-1
2: \(=-\left(4x^2-12x-10\right)\)
\(=-\left(4x^2-12x+9-19\right)\)
\(=-\left(2x-3\right)^2+19< =19\)
Dấu '=' xảy ra khi x=3/2
3: \(=-\left(x^2+4x+4-4\right)=-\left(x+2\right)^2+4< =4\)
Dấu '=' xảy ra khi x=-2
Giải:
5) \(-x^2+x-\dfrac{1}{2}\)
\(=-x^2+x-\dfrac{1}{4}+\dfrac{3}{4}\)
\(=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\le\dfrac{3}{4}\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
6) \(-\dfrac{1}{4}x^2+x-2\)
\(=-\dfrac{1}{4}x^2+x-1-1\)
\(=-\left(\dfrac{1}{4}x^2-x+1\right)-1\)
\(=-\left(\dfrac{1}{2}x-1\right)^2-1\le-1\)
\(\Leftrightarrow\dfrac{1}{2}x-1=0\Leftrightarrow x=2\)
Vậy ...
7) \(-\dfrac{1}{9}x^2-\dfrac{1}{3}x+1\)
\(=-\dfrac{1}{9}x^2-\dfrac{1}{3}x-\dfrac{1}{4}+\dfrac{5}{4}\)
\(=-\left(\dfrac{1}{9}x^2+\dfrac{1}{3}x+\dfrac{1}{4}\right)+\dfrac{5}{4}\)
\(=-\left(\dfrac{1}{3}x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{3}x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy ...
8) \(-2x^2+2xy-2y^2+2x+2y-8\)
\(=-x^2+2xy-y^2+2x-x^2+2y-y^2-1-1-6\)
\(=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-6\)
\(=-\left(x-y\right)^2-\left(x-1\right)^2-\left(y-1\right)^2-6\le-6\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Vậy ...
4. 4x2 + 4x + 1 = ( 2x + 1)2
5. \(\dfrac{1}{4}x-\dfrac{2}{3}xy+\dfrac{4}{9}y^2\) \(=\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.\dfrac{2}{3}+\left(\dfrac{2}{3}y\right)^2\)
\(=\left(\dfrac{1}{2}x-\dfrac{2}{3}y\right)^2\)
6. \(4a^2-\dfrac{4}{3}ab+\dfrac{1}{9}b^2=\left(2a\right)^2-2.2a.\dfrac{1}{3}+\left(\dfrac{1}{3}b\right)^2=\left(2a-\dfrac{1}{3}b\right)^2\)
7.
\(9x^2+4xy+\dfrac{4}{9}y^2-25z^2=\left(3x+\dfrac{2}{3}y\right)^2-\left(5z\right)^2=\left(3x+\dfrac{2}{3}y-5z\right)\left(3x+\dfrac{2}{3}y+5z\right)\)
x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x)
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1]
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4
Vay gia tri nho nhat P=4 khi x=1
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4]
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2
Vay gia tri nho nhat Q= -9/2 khi x= 3/2
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4
= ( x-1/2)^2 + (y+3)^2 +3/4
M>= 3/4
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7]
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7
Vay GTLN A=7 khi x=2
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4]
GTLN B= 1/4 khi x=1/2
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4)
= -2[(x-1/2)^2 +9/4]
GTLN N= -9/2 khi x=1/2
Giải:
\(-x^2-2x-2\)
\(=-x^2-2x-1-1\)
\(=-\left(x^2+2x+1\right)-1\)
\(=-\left(x+1\right)^2-1\le-1\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ...
2) \(-4x^2+12x+10\)
\(=-4x^2+12x-9+19\)
\(=-\left(4x^2-12x+9\right)+19\)
\(=-\left(2x-3\right)^2+19\)
\(=19-\left(2x-3\right)^2\le19\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy ...
3) \(-x^2-4x\)
\(=-x^2-4x-4+4\)
\(=-\left(x^2+4x+4\right)+4\)
\(=-\left(x+2\right)^2+4\le4\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy ...
4) \(-x^2+6x-5\)
\(=-x^2+6x-9+4\)
\(=-\left(x^2-6x+9\right)+4\)
\(=-\left(x-3\right)^2+4\le4\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy ...