Không dùng máy tính hãy so sánh:
A = 2√2019 B = √2018 + √2020Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\sqrt{4076360}\) và \(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)
Mà \(\left(2\sqrt{4076360}\right)^2=16305440\) và \(4038^2=16305444\)
\(\Rightarrow2\sqrt{4076360}< 4038\)
\(\Rightarrow\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)
\(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\cdot\sqrt{2018\cdot2020}\)
\(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)
mà \(2\cdot\sqrt{2018\cdot2020}< 4038\)
nên \(\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)
\(7^{2019}-7^{2020}=7^{2019}\left(1-7\right)\)
\(7^{2018}-7^{2019}=7^{2018}\left(1-7\right)\)
Mà \(7^{2019}>7^{2018}\)
\(\Rightarrow7^{2019}-7^{2020}>7^{2018}-7^{2019}\)
# Học tốt
\(7^{2019}-7^{2020}=7^{2019}-7\cdot7^{2019}=-6.7^{2019}\)
\(7^{2018}-7^{2019}=7^{2018}-7\cdot7^{2018}=-6\cdot7^{2018}\)
vì \(7^{2019}>7^{2018}\Rightarrow-6\cdot7^{2019}< -6\cdot7^{2018}\)
Vậy \(7^{2019}-7^{2020}< 7^{2018}-7^{2019}\)
ta có :
A = \(\dfrac{5^{2020}+1}{5^{2020}+1}\)
B = \(\dfrac{5^{2019}+1}{5^{2020}+1}\)
\(\Leftrightarrow\) B < A
A = \(\dfrac{5^{2020}+1}{5^{2021}+1}\) ⇒ A \(\times\) 10 = 2 \(\times\)5 \(\times\) \(\dfrac{5^{2020}+1}{5^{2021}+1}\) =2\(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\)
10A =2 \(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\) = 2 \(\times\)(1 + \(\dfrac{4}{5^{2021}+1}\) )= 2 + \(\dfrac{8}{5^{2021}+1}\) >2
B = \(\dfrac{10^{2019}+1}{10^{2020}+1}\) ⇒ B \(\times\) 10 = 10 \(\times\) \(\dfrac{10^{2019}+1}{10^{2020}+1}\)= \(\dfrac{10^{2020}+10}{10^{2020}+1}\)
10B = \(\dfrac{10^{2020}+10}{10^{2020}+1}\) = 1 + \(\dfrac{9}{10^{2020}+1}\) < 2
10A > 2 > 10B ⇒ 10A>10B ⇒ A>B
\(8^2=64=32+2\sqrt{16^2}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{15.17}=32+2\sqrt{\left(16-1\right)\left(16+1\right)}\)
\(=32+2\sqrt{16^2-1}\)
\(< =>8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\)
\(8>\sqrt{15}+\sqrt{17}\)
\(\left(\sqrt{2019}+\sqrt{2021}\right)^2=4040+2\sqrt{2019.2021}\)
\(=4040+2\sqrt{\left(2020-1\right)\left(2020+1\right)}=4040+2\sqrt{2020^2-1}\)
\(\left(2\sqrt{2020}\right)^2=8080=4040+2\sqrt{2020^2}\)
\(< =>\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)
mik chọn điền
<
mik lười chép ại đề bài
Đặt \(A=\left(\sqrt{2018}+\sqrt{2020}\right)\)
\(\Rightarrow A^2=2018+2\sqrt{2018.2020}+2020=4038+\sqrt{4.2018.2020}=4038+\sqrt{4.\left(2019^2-1\right)}\)
Đặt \(B=2\sqrt{2019}=\sqrt{4.2019}\)
\(B^2=4.2019=2.2019+2.2019=4038+\sqrt{4.2019^2}\)
=> \(\sqrt{4.2019^2}>\sqrt{4.\left(2019^2-1\right)}\)
\(\Rightarrow A>B\Leftrightarrow\sqrt{2018}+\sqrt{2020}>2\sqrt{2019}\)
\(\dfrac{2019}{2020}=1-\dfrac{1}{2020}>1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
Giải:
Ta có:
\(\left(\sqrt{2018}+\sqrt{2020}\right)^2\)
\(=2018+2020+2\sqrt{2018.2020}\)
\(=2019+2019+2\sqrt{\left(2019-1\right)\left(2019+1\right)}\)
\(=2.2019+2\sqrt{\left(2019-1\right)\left(2019+1\right)}\)
\(=2.2019+2\sqrt{2019^2-1^2}< 2.2019+2.2019\)
\(\Leftrightarrow2.2019+2\sqrt{2019^2-1^2}< 4.2019\)
\(\Leftrightarrow2.2019+2\sqrt{2019^2-1^2}< \left(2\sqrt{2019}\right)^2\)
\(\Leftrightarrow\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)
Vậy ...
Bình phương A và B rồi so sánh