cho tam giác ABC vuông tại A (AB<AC),đường cao AH.Từ B kẻ tía Bx vuông góc AB,tia Bx cắt tia AH tại K
a,tứ giác ABKC là hình gì?tại sao?
b,chứng minh:tam giác ABK đồng dạng tam giác CHA.từ dó suy ra:AB.AC=AK.CH
c,chứng minh:AH^2=HB.HC
d,giả sử BH=9cm,HC=16cm.Tính Ab,Ah
a. Ta có: BK ⊥ AB
AB ⊥ AC
⇒ BK // AC
Suy ra: ABKC là hình thang
b.
Xét △ ABK và △CHA có:
Góc B = H = 90o
Góc AKB = CAH ( So le trong)
Do đó: △ABK ~ △CHA (g.g)
⇒ \(\dfrac{AB}{CH}=\dfrac{AK}{CA}\Rightarrow AB.AC=AK.CH\)
c.
Xét △HBA và △HAC có:
Góc H = 90o
Góc HBA = góc HAC ( cùng phụ góc C)
Do đó: △HBA~△HAC (g.g)
⇒ \(\dfrac{HB}{HA}=\dfrac{HA}{HC}\Rightarrow AH^2=HB.HC\)
d. Ta có: AH2 = HB.HC
⇒ AH2 = 9.16 = 144 (cm)
⇒ AH = 12 (cm)
Lại có: △ABH vuông tại H
⇒ AB2 = AH2 + BH2
\(\Rightarrow AB^2=12^2+9^2\)
⇒ AB2 = 225
⇒ AB = 15 (cm)
Vậy: AH = 12 cm; AB = 15 cm