K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Câu hỏi của Nguyễn Thị Vân - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link bên trên nhé.

5 tháng 1 2018

Câu hỏi của Nguyễn Thị Vân - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link bên trên nhé.

13 tháng 3 2016

Bạn vẽ hình ra đã rồi nhìn lời giải nhá

a) TG' ABC vuông cân tại A -> g' ABC = g' ACB = 45 và AB = AC

    TG' ABH vuông tại H -> g' ABH = 90 - BAH (1)

    Có g' CAH = 90 - BAH ( TG' ABC vuông tại A ) (2) 

 Từ (1) và (2) -> g' ABH = g' CAH 

Xét TG' AHB và TG' AKC có

      g' AHB = g' AKC ( = 90 )  

         AB = AC  ( gt )

       g' HAB = g' KAC ( cmt )

 -> TG' AHB = TG' AKC ( ch - gn )

-> BH = Ak

      

    

18 tháng 12 2016

1,Ta có: Tam giác ABC là tam giác vuông cân 
=> AB=AC 
Mặt khác có: 
mà 
=>
Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K 
Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿
=>BH=AK﴾đpcm﴿
2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
Mặt khác: 
mà 
=> 
=> Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì
Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿
AH=CK ﴾câu a﴿
=>MH=MK  và   
Ta có: ﴾AM là đường cao﴿
Từ ;=> 
=> Góc HMK vuông 
Kết hợp ;=> MHK là tam giác vuông cân

u bai nay lop 7 ma

18 tháng 12 2016

Bạn tham khảo bài giải của mình ở link sau nhé,chỉ cần gạch bỏ BH = AK là xong : olm.vn/hoi-dap/question/779590.html

5 tháng 1 2018

Câu hỏi của Nguyễn Thị Vân - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link bên trên nhé.

Bài làm

a) Xét tam giác ABC có: 

\(\widehat{BAE}+\widehat{EAC}=90^0\)( Hai góc phụ nhau )

Xét tam giác AKC có:

\(\widehat{EAC}+\widehat{KCA}=90^0\)

=> \(\widehat{BAE}=\widehat{EAC}\)

Xét tam giác BHA và tam giác AKC có:

\(\widehat{BHA}=\widehat{AKC}=90^0\)

Cạnh huyền AB = AC ( Do tam giác ABC vuông cân ở A )

Góc nhọn: \(\widehat{BAE}=\widehat{EAC}\)( cmt )

=> Tam giác BHA = Tam giác AKC ( Cạnh huyền - góc nhọn )

=> BH = AK ( hai cạnh tương ứng )

b) Vì tam giác ABC vuông cân ở A

Mà AM là trung tuyến ( Do M là trung điểm BC )

=> AM cũng là đường cao của BC

=> AM vuông góc với BC

Xét tam giác AME vuông ở H có:

\(\widehat{MEA}+\widehat{MAE}=90^0\)

Xét tam giác KEC vuông ở K có:

\(\widehat{KEC}+\widehat{KCE}=90^0\)

Mà \(\widehat{MEA}=\widehat{KEC}\)( hai góc đối đỉnh )

=> \(\widehat{MAE}=\widehat{KCE}\)                         (1) 

Ta có: CK vuông góc với AK

BH vuông góc với AK

=> CK // BH 

=> \(\widehat{KCE}=\widehat{EBH}\)                                 (2)

Từ (1) và (2) => \(\widehat{EBH}=\widehat{MAE}\)

Xét tam giác MAC vuông ở M có:

\(\widehat{MCA}+\widehat{MAC}=90^0\)

Xét tam giác ABC vuông ở A có:

\(\widehat{ABC}+\widehat{MCA}=90^0\)

=> \(\widehat{MAC}=\widehat{ABC}\)

Mà \(\widehat{ABC}=\widehat{MCA}\)( Do tam giác ABC vuông cân ở A )

=> \(\widehat{MAC}=\widehat{MCA}\)

=> Tam giác MAC vuông cân ở M

=> MA = MC

Mà BM = MC ( Do M trung điểm BC )

=> MA = MC = BM

Xét tam giác MBH và tam giác MAK có:

AM = BM ( cmt )

\(\widehat{EBH}=\widehat{MAE}\)( cmt )

AK = BH ( cmt )

=> Tam giác MBH = tam giác MAK ( c.g.c )

c) Vì tam giác MBH = tam giác MAK ( cmt )

=> \(\widehat{MKH}=\widehat{BHM}\)                                (3)

=> MK = MH

=> Tam giác MHK cân ở M                   (4)

Xét tam giác BHE vuông ở H có:

\(\widehat{BHM}+\widehat{MHK}=90^0\)( Hai góc phụ nhau )                   (5)

Thay (3) vào (5) ta được: \(\widehat{MKH}+\widehat{MHK}=90^0\)                           

=> Tam giác MHK vuông ở M                     (6) 

Từ (4) và (6) => Tam giác MHK vuông cân ở M

# Mik thấy nhiều bạn khó câu này nên mik lm #

8 tháng 2 2020

Chịu !!

a, BH = AK:

Ta có: ΔABC vuông cân tại A.

=> A1ˆ=A2ˆ=90oA1^=A2^=90o (1)

Cũng có: BH ⊥ AE.

=> ΔBAH vuông tại H.

=> B1ˆ+A2ˆ=90oB1^+A2^=90o (2)

Từ (1) và (2) => A1ˆ=B1ˆA1^=B1^.

Xét ΔBAH và ΔACK có:

+ AB = AC (ΔABC cân)

+ H1ˆ=K1ˆ=90oH1^=K1^=90o (CK ⊥ AE, BH ⊥ AE)

+ A1ˆ=B1ˆ=(cmt)A1^=B1^=(cmt)

=> ΔBAH = ΔACK (cạnh huyền - góc nhọn)

=> BH = AK (2 cạnh tương ứng)

b, ΔMBH = ΔMAK:

Ta có: BH ⊥ AK; CK ⊥ AE.

=> BH // CK.

=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]

Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]

Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]

AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]

Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]

Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.

Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.

Xét ΔMBH và ΔMAK có:

+ MA = MB (cmt)

+ HBMˆ=MAKˆHBM^=MAK^ (cmt)

+ BH = AK (câu a)

=> ΔMBH = ΔMAK (c - g - c)

c, ΔMHK vuông cân:

Xét ΔAMH và ΔCMK có:

+ AH = CK (ΔABH = ΔCAK)

+ MH = MK (ΔMBH = ΔMAK)

+ AM = CM (AM là trung tuyến)

=> ΔAMH = ΔCMK (c - c - c)

=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)

mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o

=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o

hay HMKˆ=90oHMK^=90o.

ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.

=> ΔHMK vuông cân tại M.

 chúc bạn học tốt