K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

bai 1

(n+1)√n=√n^3+√n>2√(n^3.n)=2n^2>2(n^2-1)=2(n-1)(n+1)

1/[(n+1)√n]<1/[2(n-1)(n+1)]=1/4.[2/(n-1)(n+1)]

A=..

n =1 yes

n>1

A<1+1/4[2/1.3+2/3.5+..+2/(n-1)(n+1)

A<1+1/4[ 2-1/(n+1)]<1+1/2<2=>dpcm

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:
Xét số hạng tổng quát:
\(\frac{1}{(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{(n+1)\sqrt{n}}<\frac{(\sqrt{n+1}-\sqrt{n}).2\sqrt{n+1}}{(n+1)\sqrt{n}}\)

Hay \(\frac{1}{(n+1)\sqrt{n}}< \frac{2\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

Áp dụng vào bài toán:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{(n+1)\sqrt{n}}< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}+....+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}=2-\frac{2}{\sqrt{n+1}}< 2\)

Ta có đpcm.

3 tháng 9 2017

quỳnh đăng lên giúp ai zậy ns đi nghe xem nào

NV
30 tháng 6 2021

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó:

\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Lời giải:

Với 2 số $a,b$ dương, ta luôn có BĐT quen thuộc sau:

\(a^3+b^3\geq ab(a+b)\)

Cách chứng minh rất đơn giản, biến đổi tương đương ta có:

\(a^3+b^3-ab(a+b)\geq 0\)

\(\Leftrightarrow a^2(a-b)-b^2(a-b)\geq 0\Leftrightarrow (a-b)^2(a+b)\geq 0\) (luôn đúng với mọi $a,b>0$)

---------------------------------------

Áp dụng vào bài toán:

\((n+1)\sqrt{n+1}+n\sqrt{n}=(\sqrt{n})^3+(\sqrt{n+1})^3\geq \sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})\)

\(\Rightarrow \frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(\frac{1}{2\sqrt{2}+1}< 1-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{3}+2\sqrt{2}}< \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

......

\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cộng theo vế:

\(\Rightarrow \text{VT}< 1-\frac{1}{\sqrt{n+1}}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Đặt \(P=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{n}}\)

Ta có:

\(\frac{P}{2}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{4}}+...+\frac{1}{2\sqrt{n}}\)

\(< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{n-1}+\sqrt{n}}(1)\)

Mà:

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{(\sqrt{2}-\sqrt{1})(\sqrt{2}+\sqrt{1})}{\sqrt{1}+\sqrt{2}}+\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{\sqrt{2}+\sqrt{3}}+\frac{(\sqrt{4}-\sqrt{3})(\sqrt{4}+\sqrt{3})}{\sqrt{3}+\sqrt{4}}+....+\frac{(\sqrt{n}-\sqrt{n-1})(\sqrt{n}+\sqrt{n-1})}{\sqrt{n-1}+\sqrt{n}}\)

\(=(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+...+(\sqrt{n}-\sqrt{n-1})\)

\(=\sqrt{n}-1(2)\)

Từ \((1);(2)\Rightarrow \frac{P}{2}< \sqrt{n}-1\Rightarrow P< 2\sqrt{n}-2\)

-----------------------

Tương tự:

\(\frac{P}{2}>\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}+\frac{1}{2\sqrt{n}}=\sqrt{n}-\sqrt{2}+\frac{1}{2\sqrt{n}}\)

\(\Rightarrow P> 2\sqrt{n}-2\sqrt{2}+\frac{1}{\sqrt{n}}\)

\(2\sqrt{n}-2\sqrt{2}+\frac{1}{\sqrt{n}}> 2\sqrt{n}-3\Rightarrow P>2\sqrt{n}-3\)

Ta có đpcm.