K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq \left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)^2\)

\(\Rightarrow \frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=ab+bc+ac\)

Do đó:
\(P\geq ab+bc+ac+\frac{9}{2(a+b+c)}\)

Áp dụng BĐT AM-GM:

\(ab+bc+ac+\frac{9}{2(a+b+c)}=\frac{ab+bc+ac}{2}+\frac{ab+bc+ac}{2}+\frac{9}{2(a+b+c)}\geq 3\sqrt[3]{\frac{9(ab+bc+ac)^2}{8(a+b+c)}}\)

Theo một kết quả quen thuộc của BĐT AM-GM:

\((ab+bc+ac)^2\geq 3abc(a+b+c)\)

Thay \(abc=1\Rightarrow (ab+bc+ac)^2\geq 3(a+b+c)\)

Do đó: \(P\geq ab+bc+ac+\frac{9}{2(a+b+c)}\geq 3\sqrt[3]{\frac{27}{8}}=\frac{9}{2}\)

Vậy \(P_{\min}=\frac{9}{2}\Leftrightarrow a=b=c=1\)

21 tháng 5 2018

ap dung bdt cosi ta co : \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge3\sqrt[3]{\dfrac{abc}{\left(abc\right)^2}}=3\) (1)

ta lai co \(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\dfrac{9}{2\left(a+b+c\right)}=\dfrac{9\left(a+b+c\right)}{2\left(a+b+c\right)^2}\ge\dfrac{9.3}{2.3^2}=\dfrac{3}{2}\) (2)

tu (1) vs (2) \(\Rightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{9}{2\left(a+b+c\right)}\ge3+\dfrac{3}{2}=\dfrac{9}{2}\)

dau "=" xay ra khi \(a=b=c=1\)

xl ! may mk bi hu nen khong viet dau dc bn thong cam

NV
23 tháng 1 2021

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

28 tháng 5 2022

Ta có : \(b=\dfrac{c+a}{2}\Rightarrow2b=c+a\Rightarrow a-b=b-c\)

Dó đó : \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}-\sqrt{c}\right)}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{a-b}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{b-c}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\) Vì  \(\left(a-b=b-c\right)\)

 

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}+\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{\sqrt{a}-\sqrt{c}}{b-c}\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{a-c}{a-b}=\dfrac{a-c}{a-\dfrac{a+c}{2}}=\dfrac{a-c}{\dfrac{2a-a-c}{2}}=\dfrac{a-c}{\dfrac{a-c}{2}}=2\)

8 tháng 1 2021

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

8 tháng 1 2021

đề là tìm GTNN ạ, dù gì cũng cảm ơn bạn nha <3

NV
30 tháng 8 2021

\(3=ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\Rightarrow abc\le1\)

\(\dfrac{1}{1+a^2\left(b+c\right)}=\dfrac{1}{1+a\left(ab+ac\right)}=\dfrac{1}{1+a\left(3-bc\right)}=\dfrac{1}{1+3a-abc}=\dfrac{1}{3a+\left(1-abc\right)}\le\dfrac{1}{3a}\)

Tương tự và cộng lại:

\(VT\le\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}=\dfrac{ab+bc+ca}{3abc}=\dfrac{3}{3abc}=\dfrac{1}{abc}\)

20 tháng 3 2022

Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b\).

NV
17 tháng 1 2021

Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)

Đơn giản là kiên nhẫn tính toán và tách biểu thức:

\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)

Sau đó Cô-si cho từng ngoặc là được

13 tháng 1 2022

Có cách nào làm ngắn hơn ko ạ

NV
21 tháng 8 2021

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

21 tháng 8 2021

∑ cái này nghĩa là gì ạ

11 tháng 1 2023

1/a+1+1/b+1+1/c+1=21/a+1+1/b+1+1/c+1=2

=> 1/a+1=1−1/b+1+1−1/c+1=b/b+1+c/c+1≥2√bc(b+1)(c+1)1/a+1=1−1/b+1+1−1/c+1=b/b+1+c/c+1≥2bc(b+1)(c+1)( AM-GM)

Tương tự ta có 1b+1≥2√ac(a+1)(c+1)1b+1≥2ac(a+1)(c+1)1c+1≥2√ab(a+1)(b+1)1c+1≥2ab(a+1)(b+1)

Nhân vế với vế các bđt trên

=> 1(a+1)(b+1)(c+1)≥8√a2b2c2(a+1)2(b+1)2(c+1)2=8⋅abc(a+1)(b+1)(c+1)1(a+1)(b+1)(c+1)≥8a2b2c2(a+1)2(b+1)2(c+1)2=8⋅abc(a+1)(b+1)(c+1)

=> 1≤8abc1≤8abc<=> abc≤18abc≤18

Đẳng thức xảy ra <=> a=b=c=1/2

11 tháng 1 2023

bạn à bạn đã làm tắt rồi thì đừng có viết kiểu thế nhá nhìn khó lắm á 

mình khuyên bạn là vô cái này : https://hoc24.vn/topic/cach-go-cong-thuc-toan-hoc-truc-quan.464/  tìm hiểu một chút là đc rồi nha