K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

Để xác định vị trí tương đối của một điểm và một đường tròn chỉ cần tính khoảng cách từ điểm đó tới tâm của đường tròn.

c) Gọi I là trung điểm BC, R là bán kính đường tròn

=> \(HI=\frac{1}{2}AH=\frac{1}{2}.R\)

Ta có: K là điểm đối xứng với H qua BC 

=> \(KH=2.HI=2.\frac{1}{2}R=R\)

=> K thuộc đường tròn

( Chú ý nếu trong trường hợp: tính được KH < R => K nằm trong đường tròn và KH>R thì K nằm ngoài đường tròn) 

11 tháng 9 2021

xin hình vs bạn

 

30 tháng 4 2020

A E F H O D B H' A' C

a . Gọi AH ∩ BC=D,BH ∩ AC=E,CH ∩ AB=F

\(\Rightarrow AD\perp BC,BE\perp AC,CF\perp AB\)

\(\Rightarrow\widehat{ADC}=\widehat{AFC}=90^0\) => ◊AFDC nội tiếp 

\(\Rightarrow\widehat{DCF}=\widehat{DAF}\)

VÌ H đối xứng H' qua BC 

\(\Rightarrow HH'\perp BC\Rightarrow A,H,,D,H'\)thẳng hàng 

\(\Rightarrow\widehat{BAH'}=\widehat{DAF}=\widehat{FDC}=\widehat{HCB}\)

Lại có: H đối xứng với H' qua BC

\(\Rightarrow\widehat{BCH'}=\widehat{HCB}\)

\(\Rightarrow\widehat{BCH'}=\widehat{BAH'}\Rightarrow\)


 

\(\Rightarrow BC\perp AA'\Rightarrow A,H,D,H',A'\) thẳng hàng 

Vì \(H,H'\) đối xứng qua BC , A,A' đối xứng qua BC 

\(\Rightarrow\widehat{BHC}=\widehat{BH'C},\widehat{BAC}=\widehat{BA'C}\)

Lại có ◊ ABH'C nội tiếp 

\(\Rightarrow\widehat{BAC}+\widehat{BH'C}=180^0\)

\(\Rightarrow\widehat{BA'C}+\widehat{BHC}=180^0\)

=> ◊ BHCA' nội tiếp 

=> Bán kính đường tròn ngoại tiếp \(\Delta BHC\) bằng bán kính đường tròn ngoại tiếp  \(\Delta A'BC\)

Ta có : A , A' đối cứng qua BC

 \(\Rightarrow A'B=AB,CA=CA'\Rightarrow\Delta ABC=\Delta A'BC\left(c.c.c\right)\)

=> Bán kính đường tròn ngoại tiếp \(\Delta A'BC\) bằng bán kính đường tròn ngoại tiếp  ΔABC

=> Bán kính đường tròn ngoại tiếp \(\Delta BHC\) bằng bán kính đường tròn ngoại tiếp ΔABC

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: ΔABC nội tiếp đường tròn đường kính BC

hay O là trung điểm của BC

\(R=\dfrac{BC}{2}\)

9 tháng 9 2021

biết làm câu B kh bạn

 

a: Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: ΔABC nội tiếp đường tròn đường kính BC

hay O là trung điểm của BC

\(\Leftrightarrow R=\dfrac{BC}{2}\)

a: Gọi D là giao của AC và HH'

=>HD=H'D

=>ΔAHH' cân tại A

=>góc AHH'=góc AHD=góc ACB

=>AH'CB là tứ giác nội tiếp