Cho tam giác đều ABC , cạnh a , H là trực tâm
a) Tâm của đường tròn ngoại tiếp tam giác ABC là điểm nào
b) Tính bán kính của đường tròn đó theo a
c) Gọi K là điểm đối xứng với H qua BC. Xác định vị trí tương đối của điểm K với đường tròn đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để xác định vị trí tương đối của một điểm và một đường tròn chỉ cần tính khoảng cách từ điểm đó tới tâm của đường tròn.
c) Gọi I là trung điểm BC, R là bán kính đường tròn
=> \(HI=\frac{1}{2}AH=\frac{1}{2}.R\)
Ta có: K là điểm đối xứng với H qua BC
=> \(KH=2.HI=2.\frac{1}{2}R=R\)
=> K thuộc đường tròn
( Chú ý nếu trong trường hợp: tính được KH < R => K nằm trong đường tròn và KH>R thì K nằm ngoài đường tròn)
a . Gọi AH ∩ BC=D,BH ∩ AC=E,CH ∩ AB=F
\(\Rightarrow AD\perp BC,BE\perp AC,CF\perp AB\)
\(\Rightarrow\widehat{ADC}=\widehat{AFC}=90^0\) => ◊AFDC nội tiếp
\(\Rightarrow\widehat{DCF}=\widehat{DAF}\)
VÌ H đối xứng H' qua BC
\(\Rightarrow HH'\perp BC\Rightarrow A,H,,D,H'\)thẳng hàng
\(\Rightarrow\widehat{BAH'}=\widehat{DAF}=\widehat{FDC}=\widehat{HCB}\)
Lại có: H đối xứng với H' qua BC
\(\Rightarrow\widehat{BCH'}=\widehat{HCB}\)
\(\Rightarrow\widehat{BCH'}=\widehat{BAH'}\Rightarrow\)
\(\Rightarrow BC\perp AA'\Rightarrow A,H,D,H',A'\) thẳng hàng
Vì \(H,H'\) đối xứng qua BC , A,A' đối xứng qua BC
\(\Rightarrow\widehat{BHC}=\widehat{BH'C},\widehat{BAC}=\widehat{BA'C}\)
Lại có ◊ ABH'C nội tiếp
\(\Rightarrow\widehat{BAC}+\widehat{BH'C}=180^0\)
\(\Rightarrow\widehat{BA'C}+\widehat{BHC}=180^0\)
=> ◊ BHCA' nội tiếp
=> Bán kính đường tròn ngoại tiếp \(\Delta BHC\) bằng bán kính đường tròn ngoại tiếp \(\Delta A'BC\)
Ta có : A , A' đối cứng qua BC
\(\Rightarrow A'B=AB,CA=CA'\Rightarrow\Delta ABC=\Delta A'BC\left(c.c.c\right)\)
=> Bán kính đường tròn ngoại tiếp \(\Delta A'BC\) bằng bán kính đường tròn ngoại tiếp ΔABC
=> Bán kính đường tròn ngoại tiếp \(\Delta BHC\) bằng bán kính đường tròn ngoại tiếp ΔABC
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Suy ra: ΔABC nội tiếp đường tròn đường kính BC
hay O là trung điểm của BC
\(R=\dfrac{BC}{2}\)
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Suy ra: ΔABC nội tiếp đường tròn đường kính BC
hay O là trung điểm của BC
\(\Leftrightarrow R=\dfrac{BC}{2}\)
a: Gọi D là giao của AC và HH'
=>HD=H'D
=>ΔAHH' cân tại A
=>góc AHH'=góc AHD=góc ACB
=>AH'CB là tứ giác nội tiếp