\(\widehat{xOy}\) nhọn và I nằm ở miền trong của góc ấy.Qua I hãy vẽ đường thẳng cắt Ox tại A, Oy tại B sao cho AB nhận I là trung điểm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau
b, Do OI=NK, OK=IM => OM=ON
Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông
c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông
=> ∆BLC = ∆KOI
=> L B C ^ = O K I ^ = B I K ^
mà B I K ^ + I B A ^ = 90 0
L B C ^ + L B I ^ + I B A ^ = 180 0
d, Có OMCN là hình vuông cạnh a cố định
=> C cố định và AB luôn đi qua điểm C
nói cách vẽ và chứng minh được ko bn??
676575686588768768574746785876876978984674
a) Xét tam giác OAM và tam giác OBN có:
+ OA = OB (gt).
+ ^NOM chung.
+ ^OAM = ^OBN (= 90o).
=> Tam giác OAM = Tam giác OBN (c - g - c).
=> OM = ON (2 cạnh tương ứng).
b) Xét tam giác ANM vuông tại A và tam giác BMN vuông tại B:
+ MN chung.
+ AM = BN (Tam giác OAM = Tam giác OBN).
=> Tam giác ANM vuông tại A = Tam giác BMN vuông tại B (cạnh huyền - cạnh góc vuông).