K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2022

Mk trình bày như hìnhundefined

2 tháng 8 2020

đường thằng (d) tiếp xúc với (O) tại A => D là tiếp tuyến của A

=> AM _|_ AB (tính chất tiếp tuyến) => tam giác AMB vuông A

lại có góc ANB=90o (góc nội tiếp chắn nửa đường tròn) => tam giác ANB vuông tại N

xét tam giác vuông AMB và ANB có \(\widehat{B}\)chung

=> tam giác AMB đồng dạng với tam giác ANB => \(\frac{AB}{BM}=\frac{BN}{AB}\Rightarrow AB^2=BN\cdot BM\)

mà AB=2R không đổi => AB2=4R2 không đổi => BM.BN=4R2 không đổi

b) ta có \(\widehat{AQP}=\frac{1}{2}\left(sđAB-sđAP\right)=\frac{1}{2}sđPB\)(định lý góc côc định ngoài đường tròn)

lại có \(PNB=\frac{1}{2}sđPB\)(tính chất góc nội tiếp) => \(AQP=PNB\left(=\frac{1}{2}sđPB\right)\)

hay \(\widehat{MQP}=\widehat{PNB}\)mà \(\widehat{MNP}+\widehat{PNB}=180^o\)(kề bù) => ^MQP=^MNP=1800

=> tứ giác MNPQ nội tiếp 

c) áp dụng bđt Cosi cho 2 số dương ta có:

\(BM+BN\ge2\sqrt{BM\cdot BN}=2\sqrt{4R^2}=4R\)

dấu "=" xảy ra khi BM=BN <=> M trùng với N trái với giả thiết => BM+BN >4R(1)

chứng minh tương tự ta có BP+BQ >4R (2)

từ (1) và (2) => BM+BN+BP+BQ >8R (đpcm)

24 tháng 8 2019

a, HS tự làm

b, HS tự làm

c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này

d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N

Đặt BH=2R; CH= 2R’

∆IOM vuông tại M có:

I M 2 = I O 2 - O M 2 =  R + r 2 - R - r 2 = 4 R r

Tương tự , ∆ION có  I N 2 = 4 R ' r

Suy ra IM+IN=EF=AH

Vậy  2 R r + 2 R ' r = 2 R R '

=>  r R + R ' = R R '

=> r =  R R ' R + R ' 2