K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}< 1\)

8 tháng 5 2018

11.2+12.3+...+149.5011.2+12.3+...+149.50

=1−12+12−13+...+149−150=1−12+12−13+...+149−150

=1−150<1

9 tháng 4 2017

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

9 tháng 4 2017

Ta có :

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...........+\dfrac{1}{49.50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

~ Chúc bn học tốt ~

6 tháng 5 2023

Ta có:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + .. + 1/50
Xét vế trái:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50
= ( 1 + 1/3 + 1/5 + ... + 1/49 ) - ( 1/2 + 1/4 + 1/6 + ... + 1/50 )
= ( 1 + 1/3 + 1/5 + ... + 1/49 ) + (1/2 + 1/4 + 1/6 + ... + 1/50 ) - 2 . ( 1/2 + 1/4 + 1/6 + ... + 1/50 )
= ( 1 + 1/2 + 1/3 + 1/4 + ...+ 1/49 + 1/50 ) - ( 1 + 1/2 + 1/3 + ... + 1/25 )
= 1/26 + 1/27 + 1/28 + ... + 1/49 + 1/50 (1)
Từ (1) => Vế trái = Vế phải 
=> Điều phải chứng minh 
- HokTot - 

7 tháng 10 2021

\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =1+\dfrac{1}{2}+...+\dfrac{1}{50}-1-\dfrac{1}{2}-\dfrac{1}{3}-...-\dfrac{1}{25}\\ =\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

7 tháng 10 2021

tại sao \(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

AH
Akai Haruma
Giáo viên
12 tháng 12 2017

Lời giải:

\(\text{VT}=\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+....+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}....+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{49}+\frac{1}{50}\)

Do đó ta có đpcm.

bài này tương tự bài trênHỏi đáp Toán

23 tháng 6 2016

1/1.2 + 1/2.3 + ... + 1/49.50 

Đặt A = 1/1.2 + 1/2.3 + ... + 1/49.50

A = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50

A = 1/1 - 1/50

A = 49/50

Vì 49/50 < 1

=> A < 1

23 tháng 6 2016

Ta có : 1/1.2 + 1/2.3 + ... + 1/49.50

= 1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50

= 1 - 1/50

= 49/50

Vì 49/50 > 1

Nên 1/1.2 + 1/2.3 + ... + 1/49.50 < 1

21 tháng 3 2017

\(E=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

\(E=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)

\(E=\dfrac{1}{1.2}-\dfrac{1}{99.100}=\dfrac{4949}{9900}\)

21 tháng 3 2017

\(E=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{98.99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

...

25 tháng 10 2021

\(0,125.\dfrac{3}{7}-\dfrac{1}{8}.\dfrac{11}{7}=\dfrac{1}{8}.\dfrac{3}{7}-\dfrac{1}{8}.\dfrac{11}{7}=\dfrac{1}{8}\left(\dfrac{3}{7}-\dfrac{11}{7}\right)=\dfrac{1}{8}.-\dfrac{8}{7}=-\dfrac{1}{7}\)

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\)