Cho a > b \(\ge0\)
CMR: a + \(\dfrac{1}{\left(b+1\right)^2\left(a-b\right)}\ge3\)
(Sử dụng Cauchy)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết:
\(a^2+b^2+c^2+a^2+b^2+c^2+2\left(ab+bc+ca\right)\le4\)
\(\Rightarrow a^2+b^2+c^2+ab+bc+ca\le2\)
Ta có:
\(\dfrac{ab+1}{\left(a+b\right)^2}=\dfrac{1}{2}.\dfrac{2ab+2}{\left(a+b\right)^2}\ge\dfrac{1}{2}.\dfrac{2ab+a^2+b^2+c^2+ab+bc+ca}{\left(a+b\right)^2}=\dfrac{1}{2}\dfrac{\left(a+b\right)^2+\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)
Tương tự và cộng lại, đồng thời đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\):
\(\Rightarrow VT\ge\dfrac{3}{2}+\dfrac{1}{2}\left(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\right)\ge\dfrac{3}{2}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{yz.xz.xy}{x^2y^2z^2}}=3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Bài này đã có ở đây:
Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24
Ta có BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=4\)
Sử dụng BĐT Cauchy schwarz dưới dạng engel ta có :
\(\dfrac{\left(a+\dfrac{1}{b}\right)^2}{1}+\dfrac{\left(b+\dfrac{1}{a}\right)^2}{1}\ge\dfrac{\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2}{2}=\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)
Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=\dfrac{1}{2}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\right]^4}\)
\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\\\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}\end{matrix}\right.\)
\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge1+3\sqrt[3]{\dfrac{1}{abc}}+3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}+\dfrac{1}{abc}\)
\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\)
\(\Rightarrow3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\ge3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\) (2)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{abc}\le\dfrac{abc+1+1}{3}=\dfrac{abc+2}{3}\)
\(\Rightarrow1+\dfrac{1}{\sqrt[3]{abc}}\ge1+\dfrac{3}{abc+2}\)
\(\Rightarrow3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) (3)
Từ (1) và (2) và (3)
\(\Rightarrow VT\ge3\left(1+\dfrac{3}{abc+2}\right)^4\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) ( đpcm )
Lời giải:
a)
Theo bất đẳng thức AM-GM ta có:
\(ab(a+b)+bc(b+c)+ac(c+a)\)
\(=a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\geq 6\sqrt[6]{a^2b.ab^2.b^2c.bc^2.c^2a.ca^2}\)
\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\geq 6abc\)
\(\Leftrightarrow ab(a+b-2c)+bc(b+c-2a)+ca(c+a-2b)\geq 0\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ca+cb-c^2}\)
\(\geq \frac{(a+b+c)^2}{ab+ac-a^2+ab+bc-b^2+ca+cb-c^2}\)
\(\Leftrightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}\)
Vì $a,b,c$ là độ dài ba cạnh tam giác nên
\(a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)
hay \(2(ab+bc+ac)-(a^2+b^2+c^2)>0\)
Mặt khác theo BĐT AM-GM ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 2(ab+bc+ac)-(a^2+b^2+c^2)\leq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac}=\frac{a^2+b^2+c^2+2(ab+bc+ac)}{ab+bc+ac}\geq \frac{3(ab+bc+ac)}{ab+bc+ac}=3\)
Vậy ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)