Chứng minh rằng : 23^5 +23^12+23^2003 không phải là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 235+2312+232003= số o chính phương
tớ o biết làm tick nha
a) A=(n^2-n+1)^2-1=> A không thể chính phuong
=> đề có thể là: \(A=n^4-2n^3+3n^2-2n+1\) Hoặc chứng minh A không phải số phương
b)
23^5 tận cùng 3
23^12 tận cùng 1
23^2003 tận cùng 7
=>B Tận cùng là 1 => B là số lẻ
23^5 chia 8 dư 7
23^12 chia 8 dư 1
23^2003 chia 8 dư 7
(7+1+7=15)
=> B chia 8 dư 7
Theo T/c số một số cp một số chính phương lẻ chỉ có dạng 8k+1=> B không phải số Cp
nếu \(A⋮b\) mà \(A⋮̸b^2\)\((A\) là số nguyên tố\()\)
\(\Rightarrow A\) không là số chính phương
tương tự vì A \(⋮5\) mà \(A⋮̸25\)
vây A ko phải là số chính phương
Đặt A=235+2312+232003=234.(23+238+231999)
ta có, 23 + 238+231999 chia hết cho 23 nhưng không chia hết cho 232 => 23+238+231999 không phải số chính phương
=> A không phải số chính phương.
đầu tiên chứng minh là mày không bị thiểu năng bằng cách xóa câu hỏi này đi nhé