Cho tam giác ABC, ba duong cao AD, BE, CF cat nhau tai H.
a, Cm Tam giac AFH dong dang Tam giac ADB.
b, Cm BH*HE=CH*HF.
c, Chung minh tam giac BFH dong dang tam giac CFA .
d, Tam giac BFD dong dang tam giac BCA.
e, Goi M la giao diem cua DF, AC. Cm MA*MC=MF*MD.
a.
Xét tam giác AFH và tam giác ADB có:
góc A chung
góc F = H = 90o
Do đó: tam giác AFH~ADB (g.g)
b.
Xét tam giác BHF và tam giác CHE có:
góc BHF = CHE ( đối đỉnh)
góc F = E = 90o
Do đó: tam giác BHF~CHE (g.g)
=> \(\dfrac{BH}{HF}=\dfrac{BF}{HE}\Rightarrow BH.HF=CH.HE\)
c.
Xét tam giác BFH và tam giác CHA có:
góc FBH = HCA ( BHF~CHE)
góc F = H =90o
Do đó: tam giác BGH~CHA (g.g)
d.
Xét tam giác BFD và tam giác BCA có:
góC B chung
\(\dfrac{BF}{BC}=\dfrac{BD}{BA}\left(\Delta BFC\sim\Delta BDA\right)\)
Do đó: tam giác BFD~BCD (g.g)