K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:
HPT \(\Rightarrow 11(2x^2+3xy+y^2)=12(x^2-xy+3y^2)\)

\(\Leftrightarrow 22x^2+33xy+11y^2=12x^2-12xy+36y^2\)

\(\Leftrightarrow 10x^2+45xy-25y^2=0\)

\(\Leftrightarrow 2x^2+9xy-5y^2=0(*)\)

Dễ thấy $y=0$ không phải một nghiệm của HPT. Đặt $x=ty$

\((*)\Leftrightarrow 2(ty)^2+9ty.y-5y^2=0\)

\(\Leftrightarrow y^2(2t^2+9t-5)=0\)

Vì $y\neq 0$ nên $2t^2+9t-5=0$

\(\Leftrightarrow (2t-1)(t+5)=0\Rightarrow \left[\begin{matrix} t=\frac{1}{2}\\ t=-5\end{matrix}\right.\)

Nếu \(t=\frac{1}{2}\Leftrightarrow 2x=y\)

Thay vào PT đầu tiên:

\(2x^2+3x.2x+4x^2=12\)

\(\Leftrightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 2\) (tương ứng)

Nếu \(t=-5\Leftrightarrow x=-5y\)

Thay vào PT đầu tiên:

\(2(-5y)^2+3(-5y)y+y^2=12\)

\(\Leftrightarrow 36y^2=12\Leftrightarrow y^2=\frac{1}{3}\)

\(\Rightarrow y=\pm \sqrt{\frac{1}{3}}\Rightarrow x=\mp 5\sqrt{\frac{1}{3}}\) (tương ứng)

Vậy..........

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:
HPT \(\Rightarrow 11(2x^2+3xy+y^2)=12(x^2-xy+3y^2)\)

\(\Leftrightarrow 22x^2+33xy+11y^2=12x^2-12xy+36y^2\)

\(\Leftrightarrow 10x^2+45xy-25y^2=0\)

\(\Leftrightarrow 2x^2+9xy-5y^2=0(*)\)

Dễ thấy $y=0$ không phải một nghiệm của HPT. Đặt $x=ty$

\((*)\Leftrightarrow 2(ty)^2+9ty.y-5y^2=0\)

\(\Leftrightarrow y^2(2t^2+9t-5)=0\)

Vì $y\neq 0$ nên $2t^2+9t-5=0$

\(\Leftrightarrow (2t-1)(t+5)=0\Rightarrow \left[\begin{matrix} t=\frac{1}{2}\\ t=-5\end{matrix}\right.\)

Nếu \(t=\frac{1}{2}\Leftrightarrow 2x=y\)

Thay vào PT đầu tiên:

\(2x^2+3x.2x+4x^2=12\)

\(\Leftrightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 2\) (tương ứng)

Nếu \(t=-5\Leftrightarrow x=-5y\)

Thay vào PT đầu tiên:

\(2(-5y)^2+3(-5y)y+y^2=12\)

\(\Leftrightarrow 36y^2=12\Leftrightarrow y^2=\frac{1}{3}\)

\(\Rightarrow y=\pm \sqrt{\frac{1}{3}}\Rightarrow x=\mp 5\sqrt{\frac{1}{3}}\) (tương ứng)

Vậy..........

22 tháng 1 2021

Chào bạn!

Bạn phân tích cái đầu thành pt : 4x2 - 4xy +y2 = (2x-y)2=9Từ đó bạn tính được: 2x-y=3 hoặc 2x-y= -3 (1)(1) suy ra được 2x = 3+y hoặc 2x=y-3Sau đó bạn nhân 2 vế của pt 2 cho 2 ta sẽ được pt mới <=> 2x+6y = 10 (2)Tới đây bạn thay 2x vào pt (2)  ( lưu ý là xét 2 TH)Cuối cùng bạn chỉ cần tìm được y sau đó suy ra x nữa là xog . <3 

Xét \(y=0\)\(\Rightarrow...\)

Xét \(y\ne0\). Ta có:

\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x=5y-y^2-xy\left(1\right)\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2), ta có:

\(\left(5y-y^2-xy\right)\left(x+y-3\right)=-3y\)

\(-y\left(x+y-5\right)\left(x+y-3\right)=-3y\)

\(\Leftrightarrow\left(x+y-5\right)\left(x+y-3\right)=3\left(\cdot\right)\)

Đặt \(x+y-5=t\), phương trình \(\left(\cdot\right)\) trở thành

\(t\left(t+2\right)=3\)\(\Leftrightarrow t^2+2t+1=4\Leftrightarrow\left(t+1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}t+1=2\\t+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-5=1\\x+y-5=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=6\\x+y=2\end{matrix}\right.\)\(\Rightarrow...\)

 

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .