K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADK có

KM là đừog trung tuyến

KC=2/3KM

Do đó: Clà trọng tâm của ΔADK

b: Vì C là trọng tâm của ΔADK

nên các cạnh của ΔABC lần lượt bằng 2/3 lần các cạnh của ΔKAD

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔMBA và ΔMCD có 

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔMBA=ΔMCD

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

b: XétΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

1 tháng 4 2016
  • A B C G D M 1 2 A B C D T E 2 1
26 tháng 4 2019

Sao tam giác ABM = tam giác DCM đc

26 tháng 4 2019

Xét tam giác ABC có 

     AB = AC ( = 5 cm )

=> tam giác ABC cân tại A ( ĐN)

Ta có AM là trung tuyến (gt)

=> AM là đg cao (t/c tam giác cân)

=> AM vuông BC (ĐN)

Ta có M là trung điểm của BC(AM là trung tuyến)

      => BM=CM=1/2 BC=6/2=3cm

Xét tam giác ABM có

    AM vuông BC (cmt)

=> tam giác ABM vuông tại M (ĐN)

=> AM2 +BM2 = AB2 (đ/l Pitago)

Thay số: AM2 + 3 = 5

=> AM2= 5-3

=> AM2= 2

=> AM = \(\sqrt{2}\)(cm)

b) tam giác  \(ABM\ne DCM\)

c) tam giác ACD ko cân

30 tháng 4 2019

A B C M D

a. Xét ΔAMC và ΔBMD, ta có:

BM = MC (gt)

∠(AMB) = ∠(BMC) (đối đỉnh)

AM = MD (gt)

Suy ra: ΔAMC = ΔDMB (c.g.c)

⇒ ∠(MAC) = ∠D (2 góc tương ứng)

Suy ra: AC // BD

(vì có 2 góc ở vị trí so le trong bằng nhau)

Mà AB ⊥ AC (gt) nên AB ⊥ BD.

Vậy (ABD) = 90o.

b. Xét ΔABC và ΔBAD ta có:

AB cạnh chung

∠(BAC) = ∠(ABD) = 90o

AC = BD (vì ΔAMC = ΔDMB)

Suy ra: ΔABC = ΔBAD (c.g.c)

c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)

Mặt khác: AM = 1/2 AD

Vậy AM = 1/2 BC.

30 tháng 4 2019

qua essy