Cho tam giác ABC có các đường trung tuyến AD; BE; CF. Cminh: \(AD+BE+CF>\dfrac{3}{4}\left(AB+BC+CA\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a) Do AD = DE nên MD là một đường trung tuyến của tam giác AEM. Hơn nữa do
CD=12CB=12CMCD=12CB=12CM
Nên C là trọng tâm của tam giá AEM.
b) Các đường thẳng AC, EC lần lượt cắt EM, AM tại F, I. Tam giác AEM có các đường trung tuyến là AF, EI, MD. Ta có ∆ADB = ∆EDG (c.g.c) nên AB = EC
Vậy: AC=23AF;BC=CM=23MD;AB=EC=23EIAC=23AF;BC=CM=23MD;AB=EC=23EI
c) Trước tiên, theo giả thiết, ta có AD = DE nên AD=12AEAD=12AE
Gọi BP, CQ là các trung tuyến của ∆ABC.
∆BCP = ∆MCF => BP=FM=12EMBP=FM=12EM. Ta sẽ chứng minh CQ=12AMCQ=12AM
Ta có:
ΔABD=ΔECD⇒ˆBAD=ˆCED⇒AB//EC⇒ˆQAC=ˆICAΔABD=ΔECD⇒BAD^=CED^⇒AB//EC⇒QAC^=ICA^
Hai tam giác ACQ và CAI có cạnh AC chung, ˆQAC=ˆICAQAC^=ICA^;
AQ=12AB=12EC=ICAQ=12AB=12EC=IC nên chúng bằng nhau.
Vậy CQ=AI=12AMCQ=AI=12AM.
Tóm lại: AD=12AE,BP=12EM,CQ=12AM
Các đường thẳng AC, EC lần lượt cắt EM, AM tại F, I. Tam giác AEM có các đường trung tuyến là AF, EI, MD. Ta có ΔADB = ΔEDC (c.g.c) nên AB = EC
Vậy: AC = 2/3 AF; BC = CM = 2/3 MD; AB = EC = 2/3 EI