Cho số 23.52.11.mỗi số 4,8,16,11,20 có là ước của a hay không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
– a = 23.52.11 = 22.2.52.11 = 4.2.52.11 ⋮ 4 do đó 4 là ước của a.
– a = 23.52.11 = 8.52.11 ⋮ 8 do đó 8 là ước của a.
– 16 không phải ước của a vì nếu 16 là ước của a thì a = 16.k = 24.k, nghĩa là khi phân tích a thành thừa số nguyên tố thì bậc của 2 phải ≥ 4. (trái với đề bài vì bậc của 2 chỉ bằng 3).
– a = 23.52.11 ⋮ 11 do đó 11 là ước của a.
– a = 23.52.11 = 2.2.2.5.5.11 = 2.(2.2.5).5.11 = 2.20.5.11 ⋮ 20 do đó 20 là ước của
Vì a = 2^3 . 5^2 . 11
nên a = 8 . 25 . 11 => a sẽ là ước của 8,11
2^3 = 4.2 => a là ước của 4
2^3 . 5^2 = 2 . 4 . 5 . 5 = 2 . 20 .5 => a là ước của 20
KL : Các số 4,8,11,20 là ước của a còn 16 thì ko
Nhớ k cho mk nha chúc bạn hok giỏi!!!
a = 23 . 52 . 11
a chia hết cho 4 => 4 thuộc Ư(a)
a chia hết cho 8 => 8 thuộc Ư(a)
a ko chia hết cho 16 => 16 ko thuộc Ư(a)
a chia hết cho 11 => 11 thuộc Ư(a)
a chia hết cho 20 => 20 thuộc Ư(a)
4 = 22 = > phải
8 = 23 => phải
16 = 24 => loại
11 = 11 => phải
20 = 22 . 5 => phải
=> Các số 4;8;11;20 là ước của a
a = 23 . 52 . 11
a = 8 . 25 . 11
a = 2200
=> Các số : 4 , 8 , 11 , 20 là ước của a
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
a = 23 . 52 . 11
a chia hết cho 4 => 4 thuộc Ư(a)
a chia hết cho 8 => 8 thuộc Ư(a)
a ko chia hết cho 16 => 16 ko thuộc Ư(a)
a chia hết cho 11 => 11 thuộc Ư(a)
a chia hết cho 20 => 20 thuộc Ư(a)
a = 23 . 52 . 11
a chia hết cho 4 => 4 thuộc Ư(a)
a chia hết cho 8 => 8 thuộc Ư(a)
a ko chia hết cho 16 => 16 ko thuộc Ư(a)
a chia hết cho 11 => 11 thuộc Ư(a)
a chia hết cho 20 => 20 thuộc Ư(a)