Cho A= \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4026}\) , B = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+....+\dfrac{1}{4025}\). So sánh \(\dfrac{A}{B}\) với \(1\dfrac{2013}{2014}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thiếu đề rồi phải là trừ hay cộng j j chứ.
Xét:
`A+B=2+1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025`
`1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025>0`
`=>A+B>2`
Mà `1 2013/2014<2`
`=>A+B>1 2013/2014`
Giải:
Ta có:
\(\dfrac{A}{B}=\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{4026}}{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4025}}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2046}\right)}{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}{1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{4025}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{4026}}{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}\)
\(\Rightarrow\dfrac{A}{B}=1+\dfrac{\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2046}}{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}\)
Dễ thấy \(\dfrac{A}{B}>1\)
Mà \(\dfrac{2013}{2014}< 1\)
\(\Rightarrow\dfrac{A}{B}>1\dfrac{2013}{2014}\)
\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)
\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)
\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)
\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)
Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B