cho Δ ABC vuong tai A co B =60 . tren canh BC lay diem D sao cho BA=BD . TIA phan giac cua B cat AC tai I
a, cm ΔBAD deu
b, cm ΔIBC can
c, CM D la trung diem cua BC
d, cho AB= 6cm . tinh BC va AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=12cm
Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
c: Xét ΔCBD có
CA,BE là đường trung tuyến
CA cắt BE tại I
Do đó: DI đi qua trung điểm của BC
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
mà góc ABD=60 độ
nên ΔBAD đều
b: Xét ΔIBC có góc ICB=góc IBC
nên ΔIBC cân tại I
c: Xét ΔBAI và ΔBDI có
BA=BD
góc ABI=góc DBI
BI chung
Do đó: ΔBAI=ΔBDI
Suy ra: góc BAI=góc BDI=90 độ
=>DI\(\perp\)BC
Ta có: ΔIBC cân tại I
mà ID là đường cao
nên D là trung điểm của BC