K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

Câu này bạn làm tương tự như câu trên nha

tick cho mình nha

17 tháng 6 2019

a/ \(đkxđ\) : \(x\ne0;x\ne1\)

b/ 

M = \(\frac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}}\)

\(=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}}\)

\(=\frac{\left(x-2\sqrt{x}+1\right).\sqrt{x}-\left(x+\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}+x-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{2\sqrt{x}-2x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{2\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=-2\)

chúc bn học tốt

30 tháng 8 2021

ĐKXĐ 

\(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\)

\(\Rightarrow x\in\left\{-4;-3;-2;-1;0;1;2\right\}\)

30 tháng 8 2021

thank

29 tháng 9 2019

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

30 tháng 9 2019

dit me may