K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

\(2\dfrac{1}{3}.\left(x+\dfrac{1}{2}\right)x=3\dfrac{3}{4}\)

<=> \(\dfrac{7}{3}x\left(x+\dfrac{1}{2}\right)=\dfrac{15}{4}\)

<=> \(\dfrac{7}{3}x^2+\dfrac{7}{6}=\dfrac{15}{4}\)

<=> \(\dfrac{7}{3}x^2=\dfrac{15}{4}-\dfrac{7}{6}\)

<=> \(\dfrac{7}{3}x^2=\dfrac{31}{12}\)

<=> x2 = \(\dfrac{31}{12}:\dfrac{7}{3}\)

<=> x2 = \(\dfrac{31}{28}\)

<=> x = \(\dfrac{\sqrt{217}}{14}\)

10 tháng 9 2021

√217/14 là bao nhiêu vậy

a: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)

\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+1+3x^2=-33\)

\(\Leftrightarrow39x=-34\)

hay \(x=-\dfrac{34}{39}\)

b: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-2\right)\left(x+2\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x=28\)

hay x=7

c: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)

\(\Leftrightarrow x^3+8-x^3+9x=26\)

\(\Leftrightarrow x=2\)

AH
Akai Haruma
Giáo viên
9 tháng 12 2021

Bạn tham khảo bài này:
https://hoc24.vn/cau-hoi/cho-biet-y-ti-le-thuan-voi-x1-x2-la-cac-gia-tri-cua-x-y1y2-la-cac-gia-tri-tuong-uong-cua-y-a-biet-xy-ti-le-thuan-va-x1-2-x2-3-y1-12-tim-y2-b-biet-xy-ti-le-nghich-v.3536605510330

3 tháng 8 2017

a) Tìm được x = -4.        

b) Tìm được x = 3.

c) Tìm được x = ±1.

16 tháng 6 2021

1) A = \(\dfrac{2x-1}{x+3}\) = \(\dfrac{3}{2}\) (=) (2x-1).2 = 3.(x+3)

                          (=) 4x-2 =3x+9

                          (=) 4x-3x = 9+2

                         (=) x = 11 (tm)

2) Để \(\dfrac{A}{B}\)\(^{x^2}\)+5 (=) \(\dfrac{2x-1}{x+3}\)\(\dfrac{2}{x^2-9}\) <  \(x^2\)+5 

                    (=) \(\dfrac{\left(2x-1\right)}{\left(x+3\right)}.\dfrac{\left(x-3\right)\left(x+3\right)}{2}\) \(x^2\)+5

                    (=) \(\dfrac{\left(2x-1\right).\left(x-3\right)}{2}< x^2+5\)

                    (=) \(\dfrac{2x^2-6x-x+3}{2}\) < \(x^2\) +5

                    (=) \(2x^2\)- 7x + 3 < \(2x^2\)+ 10

                    (=)  (\(2x^2\)-\(2x^2\)) - 7x < -3 +10

                    (=) -7x < 7 

                    (=) x > -1