K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHEB vuông tại E và ΔCHA vuông tại H có 

\(\widehat{EHB}=\widehat{HCA}\)

Do đó: ΔHEB\(\sim\)ΔCHA

Suy ra: \(\dfrac{HE}{CH}=\dfrac{BH}{AC}\left(1\right)\)

Xét tứ giác AEHF có 

\(\widehat{AFH}=\widehat{AEH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: HE=AF(2)

từ (1) và (2) suy ra \(\dfrac{AF}{CH}=\dfrac{BH}{AC}\)

Đề sai rồi bạn

10 tháng 9 2021

tam giác ABC vuong tại A nhé bạn,mình nhầm

 

7 tháng 9 2017

hinh tu ve

cm: aehf la hinh chu nhat vi co 4 goc vuong

suy ra af=eh

\(\Delta BEHdd\Delta BAC\)

\(\frac{EH}{AC}=\frac{BH}{AB}< =>\frac{EH}{BH}=\frac{AC}{AB}\)

tg_bac dd tg_ahc

\(\frac{AC}{AB}=\frac{CH}{AC}\)

suy ra

\(\frac{AF}{BH}=\frac{CH}{AC}\)(do af=eh)

\(\frac{AF}{CH}=\frac{BH}{AC}\)

7 tháng 9 2017

a. Qua C dung duong thang vuong AC tai C cat NH tai I. De thay tg vuong CAM = tg vuong ICN (AM=CN;goc ACM=goc CIN) =>IC=CA => ACIB la hinh vuong Goi J la trung diem IC. BJ giao NI tai ok De thay BJ // CM => ok la trung diem IH va BK vuong goc IN (Do CM vuong goc IN tai H) => BK vua la duong cao, vua la trung tuyen cua tg BHI =>tg BHIcan tai B =>BH=BI ma ACIB la hinh vuong => BH=BI=BA => ABH can tai B b. De thay tu giac MBIH noi tiep (B=H=ninety) =>goc BIM = goc BHM (cung chan BM) (a million) Mat khac vi HE vuong goc AB => HE // AC => goc EHM = goc ACM (goc dong vi) (2) Hon nua tg AMC = tg BMI => goc BIM = goc ACM (3) Tu (a million), (2), (3) => goc BHM = goc EHM => HM la phan giac goc BHE

5 tháng 5 2022

\(\wr\)

4 tháng 7 2023

A C B H E F J I O

O là giao của AH và EF

\(AF\perp AB;HE\perp AB\) => AF//HE

\(AE\perp AC;HF\perp AC\) => AE//HF

=> AEHF là hình bình hành mà \(\widehat{A}=90^o\) => AEHF là HCN

\(\Rightarrow AH=EF\) (trong HCN hai đường chéo băng nhau)

\(OA=OH;OE=OF\) (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

=> OE=OH => tg OEH cân tại O

Vì AEHF là HCN nên

\(\widehat{EAF}=\widehat{EHF}=90^o\) => A và H cùng nhìn EF dưới 1 góc vuông => AEHF là tứ giác nội tiếp đường tròn tâm O bán kính EF

Xét tg vuông BEH có

IB=IH (gt) \(\Rightarrow IE=IB=IH=\dfrac{BH}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg IEH cân tại I \(\Rightarrow\widehat{IEH}=\widehat{IHE}\) (1)

tg OEH cân tại O (cmt) \(\Rightarrow\widehat{OEH}=\widehat{OHE}\) (2)

Mà \(\widehat{IHE}+\widehat{OHE}=\widehat{AHB}=90^o\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{IEH}+\widehat{OEH}=\widehat{FEI}=90^o\)

\(\Rightarrow IE\perp EF\) mà EF là đường kính (O) => IE là tiếp tuyến đường tròn (O).

C/m tương tự ta cũng có \(JF\perp EF\) => JF cũng là tiếp tuyến với (O)

=> IE//JF (cùng vuông góc với EF)

 

góc AFH=góc AEH=góc FAE=90 độ

=>AEHF là hình chữ nhật

góc JFE=góc JFH+góc EFH

=góc JHF+góc EAH

=góc HBA+góc HAB=90 độ

=>JF là tiếp tuyến của (O)

góc IEF=góc IEH+góc FEH

=góc IHE+góc FAH

=góc HAC+góc HCA=90 độ

=>IE là tiếp tuyến của (O)

=>IE//FJ

3 tháng 7 2023

cảm ơn bạn rất nhiều ạaaa

22 tháng 2 2020

a) Vì tam giác ABC cân tại A suy ra AC=AC (T/chất), góc B= góc C

Xét tam giác ABH và tam giác ACH

Có: AB=AC (Vì tam giác ABC cân tại A)

     AH chung

HB=HB (GT)

suy ra tam giác ABH = tam giác ACH (c.c.c) (1)

b) Vì HB=HC=BC/2=6/2=3 (cm)

Từ (1) suy ra góc AHB=góc AHC (2 góc tương ứng)

mà góc AHB=góc AHC=180 độ 

suy ra góc AHB=góc AHC=90 độ

Xét tam giác AHB vuông tại H suy ra AB^2=AH^2+BH^2 (Định lý pytago)

suy ra 5^2=AH^2+3^2

25=AH^2+9

suy ra AH^2=16 suy ra AH=4(cm) vì AH >0

c) Xét tam giác vuông AHE và tam giác vuông AHF

có AH chung

góc HAE=góc HAF ( theo câu a)

suy ra tam giác AHE =tam giác  AHF (cạnh huyền-góc nhọn)

suy ra AE=AF suy ra A thuộc đường TT của EF  (3)

HE=HF suy ra H thuộc đường TT của EF   (4)

 từ (3) và (4) suy ra AH là đường TT của EF