K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

\(B=\dfrac{8x^2-6x+1}{x^2}\)

= \(\dfrac{8x^2}{x^2}-\dfrac{6x}{x^2}+\dfrac{1}{x^2}\)

= \(1-\dfrac{6}{x}+\dfrac{1}{x^2}\)

đặt t=\(\dfrac{1}{x}\) ta có

1-6y+y2

= (y2-6y+9)-8

= (y-3)2-8

do (y-3)2 ≥ 0 ∀ x

⇔ (y-3)2 -8 ≥ -8

⇔ B ≥ -8

nim B =-8 dấu "=" xảy ra khi

y-3=0 ⇔ y=3 ⇔ \(\dfrac{1}{x}=3\) ⇔ x=\(\dfrac{1}{3}\)

vậy nim B =-8 khi x=\(\dfrac{1}{3}\)

1 tháng 5 2022

\(âP\left(x\right)=13x^3+4x^2-11x-2\)

\(b.Q\left(x\right)=x^3+9x-5\)
\(c.A\left(x\right)=14x^3-x^2+10x+14\)
\(d.B\left(x\right)=2x^2+x+3\)

22 tháng 1 2018

a) Kết quả N = (x + 1)(x + 2);

b) Kết quả N = 2(x + 3)(x - 3).

23 tháng 10 2017

Nếu ol thì tham khảo nah nguoiemtinhthong.

1.1

2x2+5x−1=7x3−1−−−−−√2x2+5x−1=7x3−1

⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)−−−−−−−−−−−−−−−√(1)⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)(1)

Đặt a=x−1−−−−−√;b=x2+x+1−−−−−−−−√;a≥0;b>0a=x−1;b=x2+x+1;a≥0;b>0

pt (1) trở thành 3a2+2b2−7ab=03a2+2b2−7ab=0

a=2ba=2b v a=13ba=13b

Các bạn tự giải quyết tiếp nhé.

1.2

TXĐ D=[1;+∞)D=[1;+∞)

đặt a=x−1−−−−−√4;b=x+1−−−−−√4;a,b≥0a=x−14;b=x+14;a,b≥0

pt (2) trở thành 3a2+2b2−5ab=03a2+2b2−5ab=0

⇔a=b⇔a=b v a=23ba=23b

...

1.3

D=[3;+∞)D=[3;+∞)

Đặt a=x2+4x−5−−−−−−−−−√;b=x−3−−−−−√;a,b≥0a=x2+4x−5;b=x−3;a,b≥0

pt (3) trở thành 3a+b=11a2−19b2−−−−−−−−−√3a+b=11a2−19b2

⇔2a2−6ab−20b2=0⇔2a2−6ab−20b2=0

⇒a=5b⇒a=5b
...

1.4

ĐK

⇔2x2−2x+2=3(x−2)x(x+1)−−−−−−−−−−−−√2x2−2x+2=3(x−2)x(x+1)

⇔(x2−2x)+2(x+1)=3(x2−2x)(x+1)−−−−−−−−−−−−−√2(x2−2x)+2(x+1)=3(x2−2x)(x+1)

Đặt x2−2x−−−−−−√=ax2−2x=a; x+1−−−−−√=bx+1=b (a;b\geq0)

⇔2a2+2b2=3ab

1.5

Đặt 4x2−4x−10=t4x2−4x−10=t (t \geq 0)

⇔t=t+4x2−2x−−−−−−−−−−√t=t+4x2−2x

⇔t2−t−4x2+2x=0t2−t−4x2+2x=0

Δ=1−4(2x−4x2)=(4x−1)2Δ=1−4(2x−4x2)=(4x−1)2

⇒t=1−2xt=1−2x hoặc t=2xt=2x

23 tháng 10 2017

1.1

2.2+5.-1=7.3-1-----v2.2+5.-1=7.3-1

2(.2+x+1)+3(x-1)

3a+b=11a2-19b2

tóm tắt

23 tháng 12 2021

c: \(=\left(x+1\right)^2+1>0\forall x\)

5 tháng 2 2022

Trả lời:

a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của biểu thức bằng 2 khi x = 3

b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTLN của biểu thức bằng - 2 khi x = 3

c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\)  (đpcm)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

a.

$A=x^2-8x+5=(x^2-8x+16)-11=(x-4)^2-11$

Do $(x-4)^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow A=(x-4)^2-11\geq 0-11=-11$

Vậy $A_{\min}=-11$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

b.

$B=2x^2+6x-4=2(x^2+3x+1,5^2)-\frac{17}{2}=2(x+1,5)^2-\frac{17}{2}$

$\geq 2.0-\frac{17}{2}=-\frac{17}{2}$

Vậy $B_{\min}=\frac{-17}{2}$ tại $x=-1,5$

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

c. Biểu thức này không có min, chỉ có max

d.

$D=x^2-x+1=(x^2-2.\frac{1}{2}.x+\frac{1}{2^2})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}$

Vậy $D_{\min}=\frac{3}{4}$. Giá trị này đạt tại $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

15 tháng 7 2018

Câu a :

\(M=x^2-6x+2018\)

\(=\left(x^2-6x+9\right)+2009\)

\(=\left(x-3\right)^2+2009\ge2009\)

Vậy \(MIN_M=2009\) . Dấu \("="\) xảy ra khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)

Câu b :

\(N=x^2-x\)

\(=\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy \(MIN_N=-\dfrac{1}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Câu c :

\(P=\left(x-1\right)\left(x+3\right)\)

\(=x^2+2x-3\)

\(=\left(x^2+2x+1\right)-4\)

\(=\left(x+1\right)^2-4\ge-4\)

Vậy \(MIN_P=-4\) . Dấu \("="\) xảy ra khi \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

15 tháng 7 2018

thanks cậu nhiều