P(x)= ax^4-1/5x+x^3-2x+10
Q(x)= 3x^4-x+x^3-x^2+5
a) P(x) + Q(x) ; P(x) - Q(x)
b) Tìm a để P(x) + Q(x) ; P(x) - Q(x) là các đa thức bậc 4 ? Bậc khác 4, khi đó hệ số cao nhất là ?
- Giúp mình với ngày mai mình phải nộp bài rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
=>5x=22
hay x=22/5
b: \(\Leftrightarrow24x^2+16x-9x-6-4x^2-16x-7x-28=10x^2-2x+5x-1\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\)
hay \(x\in\left\{3;-\dfrac{11}{10}\right\}\)
c: \(\Leftrightarrow x^3+2x^2-5x-10+5x=2x^2+17\)
\(\Leftrightarrow x^3+2x^2-10-2x^2-17=0\)
=>x3=27
=>x=3
d: \(\Leftrightarrow x^3+1-x^3+3x=15\)
=>3x=14
hay x=14/3
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
a)
\(\left(4x-10\right)\cdot\left(24+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{24}{5}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{5}{2};-\frac{24}{5}\right\}\)
b)
\(\left(2x-5\right)\left(3x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{5}{2};\frac{2}{3}\right\}\)
c)
\(\left(2x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{1}{2};-\frac{1}{3}\right\}\)
d)
\(x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(S=\left\{0;\frac{1}{2}\right\}\)
e) \(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\)
Do \(x^2\ge0\) Nên \(x^2+4>0\)
\(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{5}\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{-\frac{3}{5};1\right\}\)
....... Còn lại cứ cho mỗi thừa số = 0 rồi tìm x như bình thường thôi bạn
1. (4x - 10)(24 + 5x) = 0
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-24}{5}\end{matrix}\right.\)
Vậy S = {\(\frac{5}{2}\); \(\frac{-24}{5}\)}
2. (2x - 5)(3x - 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy S = {\(\frac{5}{2}\); \(\frac{2}{3}\)}
3. (2x - 1)(3x + 1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{3}\end{matrix}\right.\)
Vậy S = {\(\frac{1}{2}\); \(\frac{-1}{3}\)}
4. x(x2 - 1) = 0
\(\Leftrightarrow\) x(x - 1)(x + 1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy S = {0; 1; -1}
5. (5x + 3)(x2 + 4)(x - 1) = 0
VÌ x2 + 4 > 0 với mọi x nên
\(\Rightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)
Vậy S = {\(\frac{-3}{5}\); 1}
6. (x - 1)(x + 2)(x + 3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy S = {1; -2; -3}
7. (x - 1)(x + 5)(-3x + 8) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\\-3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)
Vậy S = {1; -5; \(\frac{8}{3}\)}
Chúc bn học tốt!!
Dạng 1:
a) $4x+9=4x+\frac{9}{4}.4=4(x+\frac{9}{4}\Rightarrow$ Nghiệm là $-\frac{9}{4}$
b) $-5x+6=-5x+(-5).(-\frac{6}{5})=-5(x-\frac{6}{5})\Rightarrow$ Nghiệm là $\frac{6}{5}$
c) $7-2x=-2x+7=-2x+(-2).(-\frac{7}{2})=-2(x-\frac{7}{2})\Rightarrow$ Nghiệm là $\frac{7}{2}$
d) $2x+5=2x+2.\frac{5}{2}=2.(x+\frac{5}{2})\Rightarrow$ Nghiệm là $-\frac{5}{2}$
e) $2x+6=2x+2.3=2(x+3)\Rightarrow$ Nghiệm là -3
g) $3x-\frac{1}{4}=3x-3.(\frac{1}{12})=3(x-\frac{1}{12})\Rightarrow$ Nghiệm là $\frac{1}{12}$
h) $3x-9=3x-3.3=3(x-3)\Rightarrow$ Nghiệm là 3
k) $-3x-\frac{1}{2}=-3x-3.(\frac{1}{6})=-3(x+\frac{1}{6})\Rightarrow$ Nghiệm là $-\frac{1}{6}$
m) $-17x-34=-17x-17.2=-17(x+2)\Rightarrow$ Nghiệm là -2
n) $2x-1=2x+2.(-\frac{1}{2})=3(x-\frac{1}{2})\Rightarrow$ Nghiệm là $\frac{1}{2}$
q) $5-3x=-3x+5=-3x+(-3).(-\frac{5}{3})=-3(x-\frac{5}{3})\Rightarrow$ Nghiệm là $\frac{5}{3}$
p) $3x-6=3x+3.(-2)=3(x-2)\Rightarrow$ Nghiệm là 2
a. Q(x)+P(x)=(ax^4-\(\dfrac{1}{5}\)x+x^3-2x+10)+(3x^4-x+x^3-x^2+5)
=ax^4-\(\dfrac{1}{5}\)x+x^3-2x+10+3x^4-x+x^3-x^2+5
=3ax^4+2x^3-3x-x^2+\(\dfrac{74}{5}\)
Giúp em ý b được không ạ ??