Cho n điểm phân biệt trong đó có đúng m điểm thẳng hàng (3<m<n).Ngoài ra không có bộ 3 điểm nào thẳng hàng .Qua 2 điểm ,ta vẽ được 1 đường thẳng .Hỏi có tất cả bao nhiêu đường thẳng phân biệt?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) với 2 điểm , ta vẽ dc 1 đường thẳng
B) từ 1 điểm ta nối với 2 điểm còn lại, ta vẽ dc 2 dt. Với 3 điểm như thế, ta vẽ dc 2.3=6 dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là 6:2=3dt
C)từ 1 điểm ta nối với 3 điểm còn lại, ta vẽ dc 3 dt. Với 4 điểm như thế, ta vẽ dc 3.4=12 dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là 12:2=6 dt
D)từ 1 điểm ta nối với 9 điểm còn lại, ta vẽ dc 9 dt. Với 10 điểm như thế, ta vẽ dc 2.3=6 dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là 6:2=3
E)từ 1 điểm ta nối với n điểm còn lại, ta vẽ dc n-1 dt. Với n điểm như thế, ta vẽ dc n.(n-1) dt(đường thẳng). Mỗi dt như vậy bị lặp lại 2 lần nên số dt ta vẽ dc là n.(n-1):2 dt
9 điểm tạo thành số đường thẳng là:
9(9-1)=72(đường thẳng)
3 điểm tạo thành số đường thẳng là:
3(3-1)/2=3(đường thẳng)
Mà trong 9 điểm đã cho có 3 điểm thẳng hàng nên số đường thẳng giảm đi là:
3-1=2(đường thẳng)
Số đường thẳng có thể kẻ là:
72-2=70( đường thẳng)
ĐS:....
- Nếu trong n điểm không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là \(\dfrac{n\left(n-1\right)}{2}\) đường.
- Số đường thẳng bị giảm nếu n điểm trong đó không có 3 điểm nào thẳng hàng trở thành n điểm thẳng hàng là: \(\dfrac{n\left(n-1\right)}{2}-1\) đường.
- Số đường thẳng tạo bởi 100 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng là: \(\dfrac{100.99}{2}=4950\) đường.
- Theo đề bài ta có: \(4950-\left(\dfrac{n\left(n-1\right)}{2}-1\right)=4915\)
\(\Leftrightarrow n\left(n-1\right)=72\)
\(\Leftrightarrow n^2-n-72=0\)
Giải phương trình trên ta được \(n=9\left(n\right)\) hay \(n=-8\) (loại)
Vậy n=9.
b4 / công thức tổng quát muốn tính số đường thẳng là:
\(\dfrac{n.\left(n-1\right)}{2}=1770\)
=> n = 60