Cho tam giác ABC có AB là cạnh nhỏ nhất. Trên tia đối của tia BA lấy điểm D sao cho BD=BC. CMR: góc ACD là góc nhọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi, mình ghi nhầm, sửa lại yêu cầu:
chứng minh rằng ACB là góc nhọn
\(\Delta ABC\)có cạnh AB nhỏ nhất=> AB<AC=> \(\widehat{ACB}\le60^0\le\widehat{ABC}\)
BD là tia đối của BA=>\(\widehat{CBD}\ge60^0\)
Xét \(\Delta DBC:\widehat{CBD}\ge60^0\Rightarrow\widehat{BCD}+\widehat{BDC}\le120^0\)
Mà \(\Delta DBC\)có BD=BC\(\Rightarrow\Delta DBC\)cân tại B\(\Rightarrow\widehat{BCD}=\widehat{BDC}\le120^0:2=60^0\)
Ta lại có \(\widehat{BCD}+\widehat{ACB}\le60^0+60^0=120^0\Rightarrow\widehat{ACD}\le120^0\)
Xét \(\Delta ACD:\widehat{ACD}\le120^0;\widehat{ADC}\le60^0\Rightarrow\widehat{ACD}>\widehat{ADC}\Rightarrow\widehat{DAC}\ge60^0\)
\(\Rightarrow\Delta ABC:\widehat{BAC}\ge60^0;\widehat{ACB}\le60^0\Rightarrow\widehat{ABC}\le60^0\)
Vậy \(\widehat{ABC}\)là góc nhọn (đpcm)