K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

a) Thay m=2 vào hệ phương trình, ta được: 

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)

Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)

 

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

=>y=(m+1)x-m-1 và x+(m^2-1)x-m^2+1=2

=>x=2-1+m^2/m^2 và y=(m+1)x-m-1

=>x=(m^2+1)/m^2 và y=(m^3+m^2+m+1-m^3-m^2)/m^2=(m+1)/m^2

x+y=(m^2+m+2)/m^2

Để x+y min thì m^2+m+2 min

=>m^2+m+1/4+7/4 min

=>(m+1/2)^2+7/4min

=>m=-1/2

20 tháng 1 2021

giúp mik đc ko, mikk cần gấp

hihi

Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)

Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)

\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)

mà \(m^2-2m+2>0\forall m\)

nên 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)

Ta có: \(\left\{{}\begin{matrix}x+my=3\\mx+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2y-4y=3m-6\\mx+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2-4\right)=3m-6\\mx+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-6}{m^2-4}\\mx=6-4y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3\left(m-2\right)}{\left(m+2\right)\left(m-2\right)}=\dfrac{3}{m+2}\\mx=6-4\cdot\dfrac{3}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\mx=6-\dfrac{12}{m+2}=\dfrac{6\left(m+2\right)-12}{m+2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\mx=\dfrac{6m+12-12}{m+2}=\dfrac{6m}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6m}{m+2}:m=\dfrac{6m}{m+2}\cdot\dfrac{1}{m}=\dfrac{6}{m+2}\\y=\dfrac{3}{m+2}\end{matrix}\right.\)

Để phương trình có nghiệm x>1 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{6}{m+2}>1\\\dfrac{3}{m+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{m+2}-1>0\\m+2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{m+2}-\dfrac{m+2}{m+2}>0\\m>-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6-m-2}{m+2}>0\\m>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\m>-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>-4\\m>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m>-2\end{matrix}\right.\Leftrightarrow-2< m< 4\)

Vậy: Để hệ phương trình có nghiệm x>1 và y>0 thì -2<m<4

5 tháng 12 2020

Ta có: \(\left\{{}\begin{matrix}\left|x\right|+y=-1\\x^2+y^2=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|+y=-1\\\left(\left|x\right|+y\right)^2-2\left|x\right|y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|+y=-1\\\left|x\right|y=\frac{1-m}{2}\end{matrix}\right.\).

Theo định lý Viète đảo, |x| và y là hai nghiệm của phương trình:

\(2t^2+2t+\left(1-m\right)=0\). (*)

Hệ phương trình đã cho có nghiệm khi và chỉ khi (*) có hai nghiệm trong đó có một nghiệm không âm.

Ta thấy nếu \(m< 1\) thì \(\left|x\right|y=\frac{1-m}{2}< 0;\left|x\right|+y=-1< 0\) nên \(\left|x\right|;y< 0\) (vô lí).

Do đó \(m\ge1\). Với \(m\ge1\) ta có \(2\left(1-m\right)\le0\) nên phương trình luôn có hai nghiệm trong đó có một nghiệm không âm. Do đó hệ phương trinh đã cho có nghiệm.

Vậy \(m\ge1\).

7 tháng 5 2018

1)

2x + 3y = 300

Ta thấy 3y \(⋮\) 3 ; 300 \(⋮\) 3

=> 2x \(⋮\) 3

=> x \(⋮\) 3

đặt x = 3n ( n >0)

=> 2x + 3y = 300

=> 6n + 3y = 300

=> y = \(\dfrac{\left(300-6n\right)}{3}=\left(100-2n\right)\)

Vì y là số nguyên dương => y > 0

=> 100 - 2n > 0

=> 50 > n

=> 0<n<50

=> số nghiệm nguyên dương thoả mãn phương trình là :

(49-1):1+1 = 49 (nghiệm).