Rút gọn
a)M= (4+căn3) . căn của 19-8căn3
b)N= căn của 8-căn15/căn30-căn2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\dfrac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}\)
\(=\dfrac{\sqrt{10}\left(2+\sqrt{3}\right)-\sqrt{2}\left(2+\sqrt{3}\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)
\(=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)\left(\sqrt{5}-1\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)
\(=\dfrac{2+\sqrt{3}}{2}\)
b) Ta có: \(\sqrt{\left(1-\sqrt{2006}\right)^2}\cdot\sqrt{2007+2\sqrt{2006}}\)
\(=\left(\sqrt{2006}-1\right)\left(\sqrt{2006}+1\right)\)
=2005
a,Ta có : \(1-\sqrt{3}\); \(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)
Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
b, Đặt A = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)
Vậy (*) = 0
1:
Ta có: \(\sqrt{2}-\sqrt{6}\)
\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)
\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)
\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)
\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)
a: \(M=\dfrac{x+4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
Sửa đề `->sqrt{7+4sqrt3}`
`=sqrt{7+4sqrt3}`
`=sqrt{4+2.2.sqrt3+3}`
`=sqrt{(2+sqrt3)^2}`
`=|2+sqrt3|`
`=2+sqrt3`
\(A=2\left(3x+1\right)=2\cdot\left(-3\sqrt{2}+1\right)=-6\sqrt{2}+2\)
a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)
b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)