biến đổi các biểu thức sau thành bình phương của 1 đa thức: (x-3)2+2(2-3x)(3-x)+(2-3x)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Biến đổi biểu thức sau thành tích các đa thức
16x^2(4x - y) - 8y^2(x + y)+xy (16x+8y)=64x3-16x2y-8xy2-8y3+16x2y+8xy2
=64x3-8y3=(4x)3-(2y)3=(4x-2y)(16x2+8xy+4y)
Bài 2: Tìm x biết
a) (x - 2)^3 -(x - 3)(x^2 + 3x + 9) + 6(x + 1)^2 = 15
<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=15
<=>x3-6x2+12x-8-x3+27+6x2+12x+6=15
<=>24x-25=15
<=>24x=-10
<=>x=-5/12
b) 6(x + 1)^2 - 2(x + 1) ^3 + 2(x - 1)(x^2 +x +1) = 1
<=>6(x2+2x+1)-2(x3+3x2+3x+1)+2(x3-1)=1
<=>6x2+12x+6-2x3-6x2-6x-2+2x3-2=1
<=>6x+2=1
<=>6x=-1
<=>x=-1/6
Bài 3: Tính giá trị biểu thức
D= (2x - 3)^2 - (4x - 6)(2x - 5) + (2x - 5)^2 với x = 99
D= (2x - 3)^2 - (4x - 6)(2x - 5) + (2x - 5)^2
=(2x - 3)^2 - 2(2x - 3)(2x - 5) + (2x - 5)^2
=[(2x-3)-(2x-5)]2
=(2x-3-2x+5)2
=22=4
=>D ko phụ thuộc vào giá trị của x nên
với x=99 D = 4
a) Ta có:
\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)
\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)
\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
a: a(x)=x^3+3x^2+5x-18
b(x)=-x^3-3x^2+2x-2
b: m(x)=a(x)+b(x)
=x^3+3x^2+5x-18-x^3-3x^2+2x-2
=7x-20
c: m(x)=0
=>7x-20=0
=>x=20/7
a)x2+6x+10
=x2+2.3x+32+1
=(x+3)2+1
Vì (x+3)2\(\ge\)0
Suy ra:(x+3)2+1\(\ge\)1(đpcm)
b)9x2-6x+2
=(3x)2-2.3x+12+1
=(3x-1)2+1
Vì (3x-1)2\(\ge\)0
Suy ra:(3x-1)2+1\(\ge\)1(đpcm)
c)x2+x+1
=x2+2.\(\frac{1}{2}x\)+\(\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
=\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)
Suy ra:\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(đpcm\right)\)
d)3x2+3x+1
Ta có:Vì 3x2 là số nguyên dương
Mà x2>x
Suy ra:3x2-3x là số nguyên dương
Vậy 3x2+3x+1 là số nguyên dương(đpcm)
=(3-x+2-3x)^2=(5-4x)^2