K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

20 tháng 6 2019

A b C B M N P G

Gọi G là trọng tâm tam giác ABC

Vì là trung tuyến \(\Rightarrow\hept{\begin{cases}BN=\frac{3}{2}BG\\CP=\frac{3}{2}CG\end{cases}}\)

\(\Rightarrow BN+CP=\frac{3}{2}\left(BG+CG\right)\)

Mà theo bđt trong tam giác cho tam giác BGC thì \(BG+GC>BC\)

\(\Rightarrow BN+CP>\frac{3}{2}BC\)

24 tháng 6 2019

A B C M N P G

Gọi giao điểm của ba đường trung tuyến AM, BN, CP là G (G là trọng tâm)

Theo tính chất trọng tâm. Ta có: \(BG+CG=\frac{2}{3}\left(BN+CP\right)\) (1)

Mặt khác theo BĐT tam giác: \(BG+CG>BC\) (2)

Từ (1) và (2) suy ra \(\frac{2}{3}\left(BN+CP\right)>BC\). Nhân \(\frac{3}{2}\) vào hai vế của BĐT ta được:

\(BN+CP>\frac{3}{2}BC\) (đpcm)