cho hình thang ABCD, AB // CD, AB <CD. Gọi O là giao điểm 2 đường chéo. K là giao điểm của AD và BC. đường thẳng KO cắt AB, CD theo thứ tự ở M và N, chứng minh:
a) \(\dfrac{MA}{ND}=\dfrac{MB}{NC}\)
b) \(\dfrac{MA}{NC}=\dfrac{MB}{ND}\)
c) MA=MB; NC=ND
a) Vì ABCD là hình thang
=> AB//DC
Xét ΔDKN có AM//DN ( AB//DC )
=>\(\dfrac{AM}{DN}=\dfrac{KM}{KN}\) (1) (theo hệ quả ta lét )
Xét Δ NKC có BM//NC (AB//DC )
=>\(\dfrac{MB}{NC}=\dfrac{KM}{KN}\) (2) (theo hệ quả ta lét )
từ (1) và (2)
=>\(\dfrac{AM}{DN}=\dfrac{MB}{NC}\)(đpcm)
b)MB//DN(AB//DC )
=>\(\dfrac{MB}{ND}=\dfrac{MO}{NO}\) (3) (theo đl ta lét)
AM//NC
=>\(\dfrac{AM}{NC}=\dfrac{MO}{NO}\) (4) (theo đl ta lét)
từ (3) và (4)
=>\(\dfrac{AM}{NC}=\dfrac{BM}{ND}\) (đpcm)
c) ta có
\(\dfrac{MA}{ND}=\dfrac{MB}{NC}\) (theo a)
\(\dfrac{MA}{NC}=\dfrac{MB}{ND}\) (theo b)
=> MA=MB ,NC=ND (đpcm)