K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

  • Trong toán học, các bước để vẽ đường tròn ngoại tiếp tam giác:
    • Tìm điểm giao nhau của ba đường trung trực (giả sử giao nhau tai O)
    • Vẽ đường tròn tâm O bán kính OA
  • Cách vẽ đường tròn ngoại tiếp tam giác bằng phần mềm GeoGebra:
    • Trong phần mềm Geogebra để vẽ đường tròn ngoại tiếp tam giác ta chỉ dùng công cụ đường tròn đi qua ba đỉnh của tam giác.
12 tháng 5 2018
  • Trong toán học, các bước để vẽ đường tròn ngoại tiếp tam giác:
    • Tìm điểm giao nhau của ba đường trung trực (giả sử giao nhau tai O)
    • Vẽ đường tròn tâm O bán kính OA
  • Cách vẽ đường tròn ngoại tiếp tam giác bằng phần mềm GeoGebra:
    • Trong phần mềm Geogebra để vẽ đường tròn ngoại tiếp tam giác ta chỉ dùng công cụ đường tròn đi qua ba đỉnh của tam giác.
12 tháng 5 2018
    • Đường tròn nội tiếp tam giác là là đường tròn tiếp xúc với 3 cạnh của tam giác.
    • Các bước vẽ đường tròn nội tiếp tam giác:
      • Vẽ tam giác ABC
        • Gợi ý bài tập SGK Học vẽ hình với phần mềm GeoGebra
      • Vẽ O là giao điểm 2 đường phân giác
        • Gợi ý bài tập SGK Học vẽ hình với phần mềm GeoGebra
      • vẽ OM⊥AB→OMOM⊥AB→OM là bán kính
        • Gợi ý bài tập SGK Học vẽ hình với phần mềm GeoGebra
      • Vẽ đường tròn tâm O qua M
      • Gợi ý bài tập SGK Học vẽ hình với phần mềm GeoGebra
16 tháng 2 2018

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước thẳng và compa).

+ Dựng đoạn thẳng AB = 3cm .

+Dựng cung tròn (A, 3) và cung tròn (B, 3). Hai cung tròn này cắt nhau tại điểm C.

Nối A với C, B với C ta được tam giác đều ABC cạnh 3cm.

b) * Vẽ đường tròn:

Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực.

Dựng đường trung trực của đoạn thẳng BC và CA.

Hai đường trung trực cắt nhau tại O.

Vẽ đường tròn tâm O, bán kính OA = OB = OC ta được đường tròn ngoại tiếp tam giác ABC.

* Tính bán kính đường tròn.

+ Gọi A’ là trung điểm BC ⇒ A’C = BC/2 = a/2.

và AA’ ⊥ BC

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do tam giác ABC là tam giác đều nên 3 đường trung trực đồng thời là ba đường trung tuyến

=> Giao điểm ba đường trung trực cũng là giao điểm ba đường trung tuyến

Suy ra O là trọng tâm tam giác ABC.

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy R = √3 (cm).

c) * Vẽ đường tròn:

Gọi A’; B’; C’ lần lượt là chân đường phân giác trong ứng với các góc Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do tam giác ABC là tam giác đều nên A’; B’; C’ đồng thời là trung điểm BC; CA; AB.

Đường tròn (O; r) là đường tròn tâm O; bán kính OA’ = OB’ = OC’.

* Tính r:

Giải bài 62 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Vẽ các tiếp tuyến với đường tròn (O; R) tại A, B, C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ΔIJK là tam giác đều ngoại tiếp (O; R).

14 tháng 3 2021

Sao OA=2/3 AA'

12 tháng 4 2017

a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)

b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).

Ta có: R= OA = AA' = . = . = √3 (cm).

c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.

r = OA' = AA' = = (cm)

d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).



12 tháng 4 2017

a) Vẽ tam giác đều ABC có cạnh bằng 3cm (dùng thước có chia khoảng và compa)

b) Tâm O của đường tròn ngoại tiếp tam giác đều ABC là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều ABC).

Ta có: R= OA = AA' = . = . = √3 (cm).

c) Đường tròn nội tiếp (O;r) tiếp xúc ba cạnh của tam giác đều ABC tại các trung điểm A', B', C' của các cạnh.

r = OA' = AA' = = (cm)

d) Vẽ các tiếp tuyến với đường tròn (O;R) tại A,B,C. Ba tiếp tuyến này cắt nhau tại I, J, K. Ta có ∆IJK là tam giác đều ngoại tiếp (O;R).

26 tháng 6 2017

Hình tam giác TenDaGiac1: Polygon A, B, C Đường tròn d: Đường tròn qua A, B, C Đường tròn e: Đường tròn qua C, I, E Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng g: Đoạn thẳng [D, E] Đoạn thẳng h: Đoạn thẳng [C, E] Đoạn thẳng n: Đoạn thẳng [D, K] Đoạn thẳng q: Đoạn thẳng [A, K] Đoạn thẳng r: Đoạn thẳng [C, K] Đoạn thẳng s: Đoạn thẳng [I, K] Đoạn thẳng h_1: Đoạn thẳng [K, E] A = (-0.02, 6.02) A = (-0.02, 6.02) A = (-0.02, 6.02) B = (-1.62, 1.42) B = (-1.62, 1.42) B = (-1.62, 1.42) C = (6.6, 1.48) C = (6.6, 1.48) C = (6.6, 1.48) Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm E: Điểm trên f Điểm E: Điểm trên f Điểm E: Điểm trên f Điểm I: Giao điểm của a, g Điểm I: Giao điểm của a, g Điểm I: Giao điểm của a, g Điểm K: Giao điểm của d, e Điểm K: Giao điểm của d, e Điểm K: Giao điểm của d, e

Do ABKC là tứ giác nội tiếp nên \(\widehat{BAK}=\widehat{BCK}\) (Hai góc nội tiếp cùng chắn cung BK)

Do ICEK là tứ giác nội tiếp nên \(\widehat{ICK}=\widehat{IEK}\) (Hai góc nội tiếp cùng chắn cung IK)

 \(\Rightarrow\widehat{DAK}=\widehat{DEK}\)

Vậy DAEK là tứ giác nội tiếp hay đường tròn ngoại tiếp tam giác ADE đi qua K.