Cho A=1/2.2/3.3/4. ... .79/89
CMR : A<1/9
Ai nhanh mình tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{2.2}\)<\(\frac{1}{1.2}\)
\(\frac{1}{3.3}\)<\(\frac{1}{2.3}\)
..............
\(\frac{1}{1009.1009}\)<\(\frac{1}{1008.1009}\)
=>A< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1008}-\frac{1}{1009}\)
=\(\frac{1}{1}-\frac{1}{1009}=\frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)
=>A<\(\frac{3}{4}\)
Mình nghĩ bạn cần xem lại :
\(A< \frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)không có nghĩa là \(A< \frac{3}{4}\)
Xem lại ..
Ta có : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)(đpcm)
+)Ta thấy:\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
............................
..............................
\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..............+\frac{1}{99}-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+.............+\frac{1}{100.100}< 1\left(\text{Đ}PCM\right)\)
Chúc bạn học tốt
=2.1!-1!+3.2!-2!+4.3!-3!+...+101.100!-100!
=2!-1!+3!-2!+4!-3!+...+101!-100!
=101!-1
1.1!+2.2!+3.3!+4.4!+5.5!+2.1.2+3.1.2.3+4.1.2.3.4+5.1.2.3.4.5
=1+4+18+96+600=600+96+4+18+1=600+100+19+=719