Cho P>3, biet p+2la so nguyen to
a chung to p+1 la hop so
b p+1 chia het cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/. y là số nguyên tố nhỏ nhất suy ra y = 2
Để X632 chia hết cho 9 thì X + 3 + 6 + 2 phải chia hết cho 9
Mà X + 3 + 6 +2 = X + 11 => X = 7 (vì 11 + 7 = 18, 18 chia hết cho 9)
2/. Để 6x 3y chia cho 5 dư 1 thì y có thể bằng 1 hoặc 6
Nếu y bằng 1 ta được số 6x31 mà tổng các chữ số của số đó là: 6 + x + 3 + 1 = 10 + x khi 10 + x chia hết cho 3.
=> x = 2 ; 5 ; 8; y = 1
Nếu y = 6 ta được số 6x36 mà tổng các chữ số của số đó là: 6 + x + 3 + 6 = x + 15 khi 15 chai hết cho 3.
=> x = các số chai hết cho 3 trong khoảng từ 0 đến 9 : 0; 3 ;6; 9; y = 6
3/ Nếu x không phải số nguyên tố hay hợp số thì x = 0 hoặc 1 (nhưng 0 không thể đứng đầu một số hạng nên x = 1)
Ta có số 163y chia hết cho 3 mà tổng các chữ số của số đó là: 1 + 6 + 3 + y khi 1 + 6 + 3 + y = 10 + y.
=> y = 2 ; 5 ; 8; x = 1
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )