K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

a/ M, N là trung điểm của AB, AC ⇒ MN là đường trung bình của △ABC, MN // BC (1)

Vậy: MNCB là hình thang (đpcm)

==========

b/ Do MN là đường trung bình của △ABC

Vậy: \(MN=\dfrac{BC}{2}\Rightarrow BC=MN.2=3,5.2=7cm\)

==========

c/ Do E là trung điểm của BC \(\Rightarrow CE=\dfrac{BC}{2}\)

- Mà \(MN=\dfrac{BC}{2}\Rightarrow MN=CE\left(2\right)\)

Từ (1) và (2). Vậy: MNCE là hình bình hành (đpcm)

21 tháng 10 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC

b, Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC=6\left(cm\right)\)

c, Vì MN//BC nên BMNC là hình thang

21 tháng 10 2021

giải chi tiết giúp em đc ko ạ 

 

1 tháng 11 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC hay BMNC là hình thang

30 tháng 10 2021

Giải giúp cho mik vs

31 tháng 10 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó:MN là đường trung bình của ΔABC

Suy ra: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)

29 tháng 11 2021

helo duy

29 tháng 11 2021

helo duy

Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BCa) Tính độ dài MN? Chứng minh MBNC là hình thang cânb) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hànhc) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhậtd) Chứng minh AMPN là hình thoia. MN = ?Trong ΔABC có:  M là trung điểm AB (gt)  N là trung điểm AC (gt)⇒ MN là đường trung bình ΔABC⇒ MN =...
Đọc tiếp

Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BC

a) Tính độ dài MN? Chứng minh MBNC là hình thang cân

b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành

c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật

d) Chứng minh AMPN là hình thoi

a. MN = ?

Trong ΔABC có:

  M là trung điểm AB (gt)

  N là trung điểm AC (gt)

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC (t/c)

Mà BC = 6cm (gt)

⇒ MN=BC/2=6/2=3(cm)

C/m: BMNC là hình thang cân

Có MN là đường trung bình ΔABC

⇒ MN//BC

⇒ BMNC là hình thang 

Mà góc ABC = góc ACB (ΔABC cân tại A)

⇒ BMNC là hình thang cân (DHNB)

b. C/m: ABCK là hình bình hành

Xét tứ giác ABCK có:

  N là trung điểm AC (gt)

  N là trung điểm BK (K đ/x với B qua M)

⇒ ABCK là hình bình hành (DHNB)

c. C/m: AHBP là hình chữ nhật

Xét tứ giác AHBP có:

  M là trung điểm AB (gt)

  M là trung điểm PH ( H đ/x với P qua M)

⇒ AHBP là hình bình hành (DHNB)

Có ΔABC cân tại A

⇒ AP là trung tuyến đồng thời là đg cao

⇒ góc APB = 90 độ

⇒ AHBP là hình chữ nhật (DHNB)

d) Chứng minh AMPN là hình thoi

Tính giúp mình câu d nha!!!

0