Hai đường thẳng MN và PQ cắt nhau tại A tạo thành góc MAP = 60• a/ tính MAQ và NAQ b/ gọi AH, Ak lần lượt là hai tia phân giác QAN và MAP. Chứng tỏ NAM và MAK là hai góc đối đỉnh c/ Trên một nửa mặt phẳng có bờ MN có chứa tia AQ về tia AO sao cho MAO = 90•. Chứng minh AO và AN ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,có góc NAQ= goc MAP hai góc đối đỉnh
mà góc MAP =33 độ
suy ra góc NAQ=33 độ b, có gocsMAP+goc MAQ=180 hai goc ke bu goc
MAQ=180‐33=147 độ c, MAP va QAN QAM va NAP d, MAP va MAQ QAN va NAP
a. Ta có:
∠NAQ và ∠PAM là hai góc đối đỉnh
Suy ra:∠NAQ = CPAM
mà ∠PAM = 33o nên ∠NAQ = 33o
b. ∠PAM và ∠MAQ là hai góc kề bù nên ∠PAM + ∠MAQ=180o
Suy ra: ∠MAQ = 180o-∠PAM =180o-33o=147o
c. Các cặp góc đối đỉnh là: ∠PAM và ∠NAQ ; ∠PAN và ∠MAQ
d. Các cặp góc kề bù là: ∠PAM và ∠MAQ; ∠PAM và ∠PAN ; ∠NAQ và ∠PAN ; ∠NAQ và ∠QAM
a. Ta có:
∠NAQ và ∠PAM là hai góc đối đỉnh
Suy ra:∠NAQ = CPAM
mà ∠PAM = 33o nên ∠NAQ = 33o
b. ∠PAM và ∠MAQ là hai góc kề bù nên ∠PAM + ∠MAQ=180o
Suy ra: ∠MAQ = 180o-∠PAM =180o-33o=147o
c. Các cặp góc đối đỉnh là: ∠PAM và ∠NAQ ; ∠PAN và ∠MAQ
d. Các cặp góc kề bù là: ∠PAM và ∠MAQ; ∠PAM và ∠PAN ; ∠NAQ và ∠PAN ; ∠NAQ và ∠QAM
a) Vì góc MAP và NAQ là 2 góc đối đỉnh
=> MAP = NAQ = 42o
Vì MAP và MAQ là 2 góc kề bù
=> MAP + MAQ = 180o => MAQ = 180o - 42o = 138o
b) Các cặp góc đối đỉnh: MAP và NAQ ; MAQ và NAP
a,có góc NAQ= goc MAP hai góc đối đỉnh
mà góc MAP =33 độ
suy ra góc NAQ=33 độ
b, có gocsMAP+goc MAQ=180 hai goc ke bu
goc MAQ=180-33=147 độ
c, MAP va QAN
QAM va NAP
d, MAP va MAQ
QAN va NAP
a: \(\widehat{MAQ}=180^0-60^0=120^0\)
\(\widehat{NAQ}=60^0\)