1) Một mảnh đất hình chữ nhật có chu vi là 34 m.Nếu tăng chiều dài thêm 3m và tăng chiều rộng thêm 2 mét thì diện tích tăng thêm 45 mét vuông.Tính chiều dài và chiều rộng của mảnh đất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng là x
Chiều dài là 60-x
Theo đề, ta có: (63-x)(x+5)=x(60-x)+265
\(\Leftrightarrow63x+315-x^2-5x=60x-x^2+265\)
=>58x+315=60x+265
=>-2x=-50
=>x=25
Vậy: Chiều rộng là 25m
Chiều dài là 35m
R=(250-50)/2=200/2=100(m)
D=250-100=150(m)
S1=150*100=15000(m2)
S2=155*115=17825m2
=>Tăng thêm 2825m2
Gọi chiều dài là a, chiều rộng là b
Theo bài ra ta có:
a = 2b (1)
(a + 15) x 2 = 3 x (b + 20) (2)
Thay a = 2b vào (2), ta được:
(2b + 15) x 2 = 3 x (b + 20)
4b + 30 = 3b + 60
4b - 3b = 60 - 30
b = 30
Suy ra: a = 60
Diện tích mảnh đất hình chữ nhật ban đầu là: 30 x 60 = 1800 (cm2)
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
Nửa chu vi :
100 : 2 = 50 (m)
Gọi x (m) là chiều rộng lúc đầu của mảnh đất hình chữ nhật :
Chiều dài lúc đầu : 50 - x (m)
Chiều rộng lúc sau : x - 2 (m)
Chiều dài lúc sau : 50 - x + 5 = 55 - x (m)
Diện tích lúc đầu : x(50 - x) (m2)
Diện tích lúc sau : (x - 2)(55 - x) (m2)
Vì diện tích lúc sau tăng 30 m2 nên ta có pt :
(x - 2)(55 - x) - x(50 - x) = 30
\(\Leftrightarrow55x-x^2-110+2x-50x+x^2=30\)
\(\Leftrightarrow7x=140\)
\(\Leftrightarrow x=20\left(N\right)\)
Vậy : ...
Lời giải:
Gọi chiều dài và chiều rộng của mảnh đất lần lượt là $a,b$ (m)
Theo bài ra ta có:
$a+b=80:2=40(1)$
$(a+3)(b+5)=ab+195$
$\Leftrightarrow 5a+3b=180(2)$
Từ $(1); (2)\Rightarrow a=30; b=10$ (m)
Gọi chiều dài, chiều rộng lần lượt là \(a,b\left(a>b>0\right)\)
Ta có \(\left\{{}\begin{matrix}2\left(a+b\right)=34\\\left(a+3\right)\left(b+2\right)=ab+45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=17\\ab+2a+3b+6=ab+45\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=17-b\\2\left(17-b\right)+3b=39\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=17-b\\34+b=39\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=12\\b=5\end{matrix}\right.\)
Vậy ...