Cho \(xy+yz+xz\ge3\)
CMR:\(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(\dfrac{x^4}{y+3z}+\dfrac{y+3z}{16}+\dfrac{1}{4}+\dfrac{1}{4}\ge4\sqrt[4]{\dfrac{x^4}{y+3z}\cdot\dfrac{y+3z}{16}\cdot\dfrac{1}{4}\cdot\dfrac{1}{4}}=x\)
\(\Rightarrow\dfrac{x^4}{y+3z}\ge x-\dfrac{y+3z}{16}-\dfrac{1}{2}\)
Tương tự cho 2 BĐT còn lại:
\(\dfrac{y^4}{z+3x}\ge y-\dfrac{z+3x}{16}-\dfrac{1}{2};\dfrac{z^4}{x+3y}\ge z-\dfrac{x+3y}{16}-\dfrac{1}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{3}{4}\left(x+y+z\right)-\dfrac{3}{2}\ge\dfrac{3}{4}\cdot3-\dfrac{3}{2}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Cách khác:
\(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4.\sqrt{3\left(x^2+y^2+z^2\right)}}=\dfrac{\sqrt{\left(x^2+y^2+z^2\right)^3}}{4\sqrt{3}}\)
\(\ge\dfrac{\sqrt{\left(xy+yz+zx\right)^3}}{4\sqrt{3}}\ge\dfrac{3\sqrt{3}}{4\sqrt{3}}=\dfrac{3}{4}\)
Dấu = xảy ra khi \(x=y=z=1\)
\(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)
\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự:
\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng vế:
\(VT\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}.\frac{y+3z}{16}.\frac{1}{4}.\frac{1}{4}}=x\)
\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\)
Tương tự cho 2 BĐT còn lại :
\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{z+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)
Công theo vế 3 BĐT trên ta được :
\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}.3-\frac{3}{2}=\frac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Cách 2:
\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\ge\frac{\frac{\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2}{3}}{4\left(x+y+z\right)}\ge\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{12}\)
\(\ge\frac{\left(xy+yz+zx\right)\sqrt{3\left(xy+yz+zx\right)}}{12}\ge\frac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Chứng minh bằng phép biến đổi tương đương:
1.
\(\Leftrightarrow4+x+y\ge4\sqrt{x+y}\)
\(\Leftrightarrow x+y-4\sqrt{x+y}+4\ge0\)
\(\Leftrightarrow\left(\sqrt{x+y}-2\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
2.
\(\Leftrightarrow\dfrac{y+z}{xyz}\ge\dfrac{4}{x^2+yz}\)
\(\Leftrightarrow\left(y+z\right)\left(x^2+yz\right)\ge4xyz\)
\(\Leftrightarrow x^2y+x^2z+y^2z+z^2y-4xyz\ge0\)
\(\Leftrightarrow y\left(x^2+z^2-2xz\right)+z\left(x^2+y^2-2xy\right)\ge0\)
\(\Leftrightarrow y\left(x-z\right)^2+z\left(x-y\right)^2\ge0\) (đúng)
Áp dụng BĐT cosi ta có:
`x^6+y^6+z^6>=3root{3}{x^6y^6z^6}=3x^2y^2z^2`
`=>3x^2y^2z^2<=3`
`=>x^2y^2z^2<=1`
`=>xyz<=1`
`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)`
`=(x^4)/(xyz)+(y^4)/(xyz)+(z^4)/(xyz)>=x^4+y^4+z^4(@)`
Áp dụng BĐT bunhia với 2 cặp số `(x^2,y^2,z^2),(x,y,z)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^3+y^3+z^3)^3`
Mà `(x^3+y^3+z^3)^2>=3(x^3y^3+y^3z^3+z^3x^3)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=3(x^3y^3+y^3z^3+z^3x^3)(@@)`
Áp dụng BĐT cosi ta có:
`x^6+1+1>=3root{3}{x^6}=3x^2`
`y^6+1+1>=3y^2`
`z^6+1+1>=3z^2`
`=>x^6+y^6+z^6+6>=3(x^2+y^2+z^2)`
`=>9>=3(x^2+y^2+z^2)`
`=>x^2+y^2+z^2<=3`
Kết hợp với `(@@)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^2+y^2+z^2)(x^3y^3+y^3z^3+z^3x^3)`
`=>x^4+y^4+z^4>=x^3y^3+y^3z^3+z^3x^3`
Kếp hợp với `(@)`
`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)>=x^3y^3+y^3z^3+z^3x^3`
Dấu = xảy ra khi `x=y=z=1`
\(\sum\frac{x}{x+\sqrt{3x+yz}}=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Sử dụng BĐT Cauchy-Schwarz, ta có
\(\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xy}+\sqrt{xz}\right)^2}}\)
\(=\sum\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
Lời giải:
Phải thêm điều kiện \(x,y,z>0\) nữa em nhé. Nếu không bài toán sai ngay với \(x=y=z=-1\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\text{VT}=\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}=\frac{(x^2)^2}{y+3z}+\frac{(y^2)^2}{z+3x}+\frac{(z^2)^2}{x+3y}\)
\(\geq \frac{(x^2+y^2+z^2)^2}{y+3z+z+3x+x+3y}=\frac{(x^2+y^2+z^2)^2}{4(x+y+z)}(1)\)
Áp dụng BĐT Bunhiacopxky: \((x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2\)
\(\Rightarrow \sqrt{3(x^2+y^2+z^2)}\geq x+y+z(2)\)
Từ \((1); (2)\Rightarrow \text{VT}\geq \frac{(x^2+y^2+z^2)^2}{4\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{(x^2+y^2+z^2)^3}}{4\sqrt{3}}\)
Theo hệ quả của BĐT AM-GM \(x^2+y^2+z^2\geq xy+yz+xz\geq 3\)
Suy ra \(\text{VT}\geq \frac{\sqrt{3^3}}{4\sqrt{3}}=\frac{3}{4}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)