K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 3 2018

Lời giải:

Phải thêm điều kiện \(x,y,z>0\) nữa em nhé. Nếu không bài toán sai ngay với \(x=y=z=-1\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}=\frac{(x^2)^2}{y+3z}+\frac{(y^2)^2}{z+3x}+\frac{(z^2)^2}{x+3y}\)

\(\geq \frac{(x^2+y^2+z^2)^2}{y+3z+z+3x+x+3y}=\frac{(x^2+y^2+z^2)^2}{4(x+y+z)}(1)\)

Áp dụng BĐT Bunhiacopxky: \((x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2\)

\(\Rightarrow \sqrt{3(x^2+y^2+z^2)}\geq x+y+z(2)\)

Từ \((1); (2)\Rightarrow \text{VT}\geq \frac{(x^2+y^2+z^2)^2}{4\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{(x^2+y^2+z^2)^3}}{4\sqrt{3}}\)

Theo hệ quả của BĐT AM-GM \(x^2+y^2+z^2\geq xy+yz+xz\geq 3\)

Suy ra \(\text{VT}\geq \frac{\sqrt{3^3}}{4\sqrt{3}}=\frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

10 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{x^4}{y+3z}+\dfrac{y+3z}{16}+\dfrac{1}{4}+\dfrac{1}{4}\ge4\sqrt[4]{\dfrac{x^4}{y+3z}\cdot\dfrac{y+3z}{16}\cdot\dfrac{1}{4}\cdot\dfrac{1}{4}}=x\)

\(\Rightarrow\dfrac{x^4}{y+3z}\ge x-\dfrac{y+3z}{16}-\dfrac{1}{2}\)

Tương tự cho 2 BĐT còn lại:

\(\dfrac{y^4}{z+3x}\ge y-\dfrac{z+3x}{16}-\dfrac{1}{2};\dfrac{z^4}{x+3y}\ge z-\dfrac{x+3y}{16}-\dfrac{1}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{3}{4}\left(x+y+z\right)-\dfrac{3}{2}\ge\dfrac{3}{4}\cdot3-\dfrac{3}{2}=\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

11 tháng 6 2017

Cách khác:

\(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4.\sqrt{3\left(x^2+y^2+z^2\right)}}=\dfrac{\sqrt{\left(x^2+y^2+z^2\right)^3}}{4\sqrt{3}}\)

\(\ge\dfrac{\sqrt{\left(xy+yz+zx\right)^3}}{4\sqrt{3}}\ge\dfrac{3\sqrt{3}}{4\sqrt{3}}=\dfrac{3}{4}\)

Dấu = xảy ra khi \(x=y=z=1\)

NV
9 tháng 4 2022

\(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế:

\(VT\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

9 tháng 4 2022

em cảm ơn thầy ạ

28 tháng 12 2019

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}.\frac{y+3z}{16}.\frac{1}{4}.\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\)

Tương tự cho 2 BĐT còn lại : 

\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{z+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

Công theo vế 3 BĐT trên ta được :

\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}.3-\frac{3}{2}=\frac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

29 tháng 12 2019

Cách 2:

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\ge\frac{\frac{\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2}{3}}{4\left(x+y+z\right)}\ge\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{12}\)

\(\ge\frac{\left(xy+yz+zx\right)\sqrt{3\left(xy+yz+zx\right)}}{12}\ge\frac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

NV
23 tháng 10 2021

Chứng minh bằng phép biến đổi tương đương:

1.

\(\Leftrightarrow4+x+y\ge4\sqrt{x+y}\)

\(\Leftrightarrow x+y-4\sqrt{x+y}+4\ge0\)

\(\Leftrightarrow\left(\sqrt{x+y}-2\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

2.

\(\Leftrightarrow\dfrac{y+z}{xyz}\ge\dfrac{4}{x^2+yz}\)

\(\Leftrightarrow\left(y+z\right)\left(x^2+yz\right)\ge4xyz\)

\(\Leftrightarrow x^2y+x^2z+y^2z+z^2y-4xyz\ge0\)

\(\Leftrightarrow y\left(x^2+z^2-2xz\right)+z\left(x^2+y^2-2xy\right)\ge0\)

\(\Leftrightarrow y\left(x-z\right)^2+z\left(x-y\right)^2\ge0\) (đúng)

28 tháng 2 2021

Áp dụng BĐT cosi ta có:

`x^6+y^6+z^6>=3root{3}{x^6y^6z^6}=3x^2y^2z^2`

`=>3x^2y^2z^2<=3`

`=>x^2y^2z^2<=1`

`=>xyz<=1`

`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)`

`=(x^4)/(xyz)+(y^4)/(xyz)+(z^4)/(xyz)>=x^4+y^4+z^4(@)`

Áp dụng BĐT bunhia với 2 cặp số `(x^2,y^2,z^2),(x,y,z)`

`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^3+y^3+z^3)^3`

Mà `(x^3+y^3+z^3)^2>=3(x^3y^3+y^3z^3+z^3x^3)`

`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=3(x^3y^3+y^3z^3+z^3x^3)(@@)`

Áp dụng BĐT cosi ta có:

`x^6+1+1>=3root{3}{x^6}=3x^2`

`y^6+1+1>=3y^2`

`z^6+1+1>=3z^2`

`=>x^6+y^6+z^6+6>=3(x^2+y^2+z^2)`

`=>9>=3(x^2+y^2+z^2)`

`=>x^2+y^2+z^2<=3`

Kết hợp với `(@@)`

`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^2+y^2+z^2)(x^3y^3+y^3z^3+z^3x^3)`

`=>x^4+y^4+z^4>=x^3y^3+y^3z^3+z^3x^3`

Kếp hợp với `(@)`

`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)>=x^3y^3+y^3z^3+z^3x^3`

Dấu = xảy ra khi `x=y=z=1`

28 tháng 2 2021

Học tốt nha ~.~

5 tháng 3 2019

\(\sum\frac{x}{x+\sqrt{3x+yz}}=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Sử dụng BĐT Cauchy-Schwarz, ta có

\(\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xy}+\sqrt{xz}\right)^2}}\)

\(=\sum\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)