Tính một cách hợp lí :
\(B=\dfrac{40404}{70707}+\dfrac{244\times395-151}{244+395\times243}+\dfrac{1\times3\times5+2\times6\times10+4\times12\times20+7\times21\times35}{1\times5\times7+2\times10\times14+4\times20\times28+7\times35\times49}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 x 3 x 5 + 2 x 6 x 10 + 4 x 10 x 12 + 7 x 21 x 35 / 1 x 5 x 7 + 2 x 10 x 14 + 4 x 20 x 28 + 7 x 35 x 49
= 3 / 7 + 6 / 14 + 10 x 2 x 6 / 10 x 2 x 28 + 21 / 49
= 3 / 7 + 6 / 14 + 6 / 28 + 21 / 49
= 3 / 7 + 6 / 14 + 3 / 14 + 3 / 7
= ( 3 / 7 + 3 / 7 ) + ( 6 / 14 + 3 / 14 )
= 6 / 7 + 9 14
= 12 / 14 + 9 / 14
= 21 / 14
nho hem
lm dau tien lun do
dung 100% nha
\(C=\frac{1.5.6+2.10.12+24.8.10}{1.3.5+2.6.10+8.6.20}\)
\(C=\frac{1.5.6.\left(1^3+2^3+8^2\right)}{1.3.5.\left(1^3+2^3+8^2\right)}=\frac{6}{3}=2\)
a) \(\dfrac{30\times25\times7\times8}{75\times8\times12\times14}=\dfrac{3\times2\times5\times25\times7\times8}{25\times3\times8\times3\times4\times2\times7}=\dfrac{5}{3\times4}=\dfrac{5}{12}\)
b) \(\dfrac{8\times3\times4}{16\times3}=\dfrac{8\times3\times2\times2}{8\times2\times3}=2\)
c) \(\dfrac{4\times5\times6}{3\times10\times8}=\dfrac{4\times5\times3\times2}{3\times5\times2\times4\times2}=\dfrac{1}{2}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
Có: A=\(\dfrac{3}{1.5}+\dfrac{3}{5.10}+...+\dfrac{3}{100.105}\)
=> A=\(3.\dfrac{5}{5}\left(\dfrac{1}{1.5}+\dfrac{1}{5.10}+...+\dfrac{1}{100.105}\right)\)
=> A= \(3.\dfrac{1}{5}\left(\dfrac{5}{1.5}+\dfrac{5}{5.10}+...+\dfrac{5}{100.105}\right)\)
=> A=\(\dfrac{3}{5}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{105}\right)\)
=> A= \(\dfrac{3}{5}\left(1-\dfrac{1}{105}\right)\)=\(\dfrac{3}{5}.\dfrac{104}{105}=\dfrac{312}{525}\)
Ta có:
\(A=\frac{3}{1\cdot5}+\frac{3}{5\cdot10}+...+\frac{3}{100\cdot105}\)
\(=\frac{3}{5}\cdot\left(\frac{5}{1\cdot5}+\frac{5}{5\cdot10}+...+\frac{5}{100\cdot105}\right)\)
\(=\frac{3}{5}\cdot\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{105}\right)\)
\(=\frac{3}{5}\left(1-\frac{1}{105}\right)=\frac{3}{5}\cdot\frac{104}{105}=\frac{312}{525}\)
\(A=\frac{2\cdot9\cdot8+3\cdot12\cdot10+4\cdot15\cdot12+...+98\cdot297\cdot200}{2\cdot3\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+...+98\cdot99\cdot100}\)
\(=\frac{2\cdot1\cdot3\cdot3\cdot4\cdot2+3\cdot1\cdot4\cdot3\cdot5\cdot2+...+98\cdot1+99\cdot3+100\cdot2}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=\frac{1\cdot3\cdot2\cdot\left(2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100\right)}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=1\cdot3\cdot2\)
\(=6\)
\(A^2=6^2=36\)
\(B=\dfrac{40404}{70707}+\dfrac{244\times395-151}{244+395\times243}+\dfrac{1\times3\times5+2\times6\times10+4\times12\times20+7\times21\times35}{1\times5\times7+2\times10\times14+4\times20\times28+7\times35\times49}\\ =\dfrac{4}{7}+\dfrac{243\times395+395-151}{244+395\times243}+\dfrac{1\times3\times5\left(1+2+4+7\right)}{1\times5\times7\left(1+2+4+7\right)}\\ =\dfrac{4}{7}+\dfrac{243\times395+244}{244+395\times243}+\dfrac{3}{7}\\ =\left(\dfrac{4}{7}+\dfrac{3}{7}\right)+1\\ =1+1=2\)