K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

Đặt số dư là a

Ta có: 5k + a - 5g - a = 5(k-g) chia hết cho 5           

14 tháng 7 2019

đặt 2 số đó là : 

 5x + y và 5z + y

ta có hiệu của chúng là : 5x + y - ( 5z + y ) = 5 ( x - z ) chia hết cho 5

8 tháng 10 2016

gọi hai số đó là a,b

vì a và b chia cho 5 có cùng số dư

=> a = 5k +r , b= 5t +r ( r < 5)

=> a -b = ( 5k+r ) - ( 5t +r ) 

            = 5k +r - 5t - r

            = 5k - 5t

            = 5 ( k - t) chia hết cho 5 

=> a- b chia hết cho 5

=> đpcm

29 tháng 10 2017

Mình thì đc học cách này

Gọi 2 số đã cho là a và b

Ta có : \(\frac{a⋮5}{b⋮5}\hept{\begin{cases}\left(a-b\right)⋮5\\\left(a+b\right)⋮5\end{cases}}\)

Vậy a chia hết cho 5 , b chia hết cho 5 thì ( a - b ) chia hết cho 5 

Bạn có thể dùng kí hiệu nhé

5 tháng 1 2017

nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!

8 tháng 10 2017

xl mk thấy tên bn ghê wa

10 tháng 9 2016

Gọi 2 số đó là a và b

Do a và b có cùng số dư khi chia cho 5

=> a = 5.m + r; b = 5.n + r (r là số dư; r < m; r < n)

Ta có: a - b = (5.m + r) - (5.n + r)

= 5.m + r - 5.n - r

= 5.m - 5.n

= 5.(m - n) chia hết cho 5

Chứng tỏ 2 số chia cho 5 có cùng số dư thì hiệu của chúng chia hết cho 5

13 tháng 10 2014

gọi hai số đó  là s  và y

cho s:7= a+b (với a;b thuộc Z và a chia hết cho 7)

Và y:7=c+b  (với c thuộc Z và c chia hết cho 7)

khi đó s-y= (a+b)-(c+b)=a+b-c-b=a-c

Mà a chia hết cho 7 và c chia hết cho 7

Vậy a-c chia hết cho 7

Vậy s-y chia hết cho 7

6 tháng 5 2015

gọi số thứ nhất là a, số thứ hai là b, thương của số thứ nhất với 7 là c, thương của số thứ hai với 7 là d, số dư của hai số đó khi chia cho 7 là k. 

giả sử a > b => c>d .

ta có : a =7c+k;b=7d+k=>a-b=(7c+k)-(7d+k)=7c-7d=7(c-d) mà c>d; c,d đều là số nguyên Nên: 7(c-d) luôn chia hết cho 7

=>a-b chia hết cho 7 (đpcm)

30 tháng 6 2018

A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )

    Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )

Ta có : ( 7A + N ) : 7 ( dư N )

           ( 7B + N ) : 7 ( dư N )

=> ( 7A + N ) - ( 7B + N ) 

=  7A - 7B

= 7 . ( A - B ) chia hết cho 7

Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .

B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2

    Gọi 2 số đó là 3k+1 và 3h+2 

Ta có : 3k+1 : 3 ( dư 1 )

            3h+2 : 3 ( dư 2 )

=> ( 3k+1 ) + ( 3h+2 )

= 3k+ 3h + 3

= 3 . ( k + h + 1 )

Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3

Đọc thì nhớ tk nhá