K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

a, \(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) ĐKXĐ: t\(\ne\)2,t\(\ne\)-3

\(\Leftrightarrow\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{\left(t+3\right)\left(t-2\right)}\)

\(\Rightarrow\left(t+3\right)\left(t+3\right)+\left(t-2\right)\left(t-2\right)=5t+15\)

\(\Leftrightarrow t^2+6t+9+t^2-4t+4-5t-15=0\)

\(\Leftrightarrow-3t-2=0\)

\(\Leftrightarrow-3t=2\)

\(\Leftrightarrow t=\dfrac{-2}{3}\) (tđk)

\(\Rightarrow S=\left\{\dfrac{-2}{3}\right\}\)

b, \(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)ĐKXĐ: x\(\ne\)\(\dfrac{2}{7}\)

\(\Leftrightarrow\) \(\left(2x+3\right)\left(\dfrac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)=0\)

\(\Rightarrow\left(\dfrac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)

\(\Leftrightarrow\) \(\Rightarrow\left(\dfrac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x+8}{2-7x}+1=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x+8+2-7x=0\\x=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-4x+10=0\\x=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-8\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{5}{2};-8\right\}\)

9 tháng 3 2018

ĐKXĐ: x khác 2 và x khác -3

\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\)

\(\Leftrightarrow\dfrac{\left(t+3\right)\left(t+3\right)}{\left(t+3\right)\left(t-2\right)}+\dfrac{\left(t-2\right)\left(t-2\right)}{\left(t+3\right)\left(t-2\right)}=\dfrac{5t+15}{t^2+t-6}\)

\(\Rightarrow t^2+6t+9+t^2-4=5t+15\)

\(\Leftrightarrow2t^2+t-10=0\)

\(\Leftrightarrow2t^2-4t+5t-10=0\)

\(\Leftrightarrow2t\left(t-2\right)+5\left(t-2\right)=0\)

\(\Leftrightarrow\left(2t+5\right)\left(t-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(loại\right)\\t=\dfrac{-5}{2}\end{matrix}\right.\)

Vậy..................

28 tháng 1 2021

1/ ĐKXĐ : \(x\ne1\)

\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow19x=7\Leftrightarrow x=\dfrac{7}{19}\left(tm\right)\)

Vậy...

b/ \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\) ĐKXĐ : \(x\ne-1\)

\(\Leftrightarrow12-28x=1+x\)

\(\Leftrightarrow11=29x\Leftrightarrow x=\dfrac{11}{29}\) \(\left(tm\right)\)

Vậy....

c/ ĐKXĐ : \(x\ne0\)

\(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)

\(\Leftrightarrow2x^2-12=2x^2+3x\)

\(\Leftrightarrow3x=-12\Leftrightarrow x=-4\) \(\left(tm\right)\)

Vậy...

4/ ĐKXĐ : \(x\ne-\dfrac{2}{3}\)

\(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)

\(\Leftrightarrow6x^2+4x-3x-2=5\)

\(\Leftrightarrow6x^2+x-7=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{6}\\x=1\end{matrix}\right.\)

Vậy....

5,6 Tương tự nhé !

 

 

1)ĐKXĐ: \(x\ne1\)

Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)

\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow21x-9-2x+2=0\)

\(\Leftrightarrow19x-7=0\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\dfrac{7}{19}\)(nhận)

Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)

2) ĐKXĐ: \(x\ne-1\)

Ta có: \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\)

\(\Leftrightarrow4\left(3-7x\right)=x+1\)

\(\Leftrightarrow12-28x-x-1=0\)

\(\Leftrightarrow-29x+11=0\)

\(\Leftrightarrow-29x=-11\)

\(\Leftrightarrow x=\dfrac{11}{29}\)

Vậy: \(S=\left\{\dfrac{11}{29}\right\}\)

3) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)

\(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)

\(\Leftrightarrow2x^2-12=2x^2+6x\)

\(\Leftrightarrow2x^2-12-2x^2-6x=0\)

\(\Leftrightarrow-6x-12=0\)

\(\Leftrightarrow-6x=12\)

\(\Leftrightarrow x=-2\)

Vậy: S={-2}

28 tháng 5 2021

ĐK: ` x \ne 2/7`

`(2x+3)((3x+8)/(2-7x)+1)=(x-5)((3x+8)/(2-7x)+1)`

`<=> ((3x+8)(2-7x)+1)(2x+3-x+5)=0`

`<=> ((3x+8)/(2-7x)+1)(x+8)=0`

 \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x+8}{2-7x}=-1\\x+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-8\end{matrix}\right.\)

Vậy `S={5/2 ; -8}`.

28 tháng 5 2021

khó hiểu lắm bạn ơii:<

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

10 tháng 6 2017

Bài 1:

\(\left(\dfrac{x}{x^2-49}-\dfrac{x-7}{x^2+7x}\right):\dfrac{2x-7}{x^2+7x}+\dfrac{x}{7-x}\)

\(=\left(\dfrac{x}{\left(x-7\right)\left(x+7\right)}-\dfrac{x-7}{x\cdot\left(x+7\right)}\right)\cdot\dfrac{x^2+7x}{2x-7}+\dfrac{x}{-\left(x-7\right)}\)

\(=\dfrac{x^2-\left(x-7\right)^2}{x\cdot\left(x-7\right)\left(x+7\right)}\cdot\dfrac{x\cdot\left(x+7\right)}{2x-7}-\dfrac{x}{x-7}\)

\(=\dfrac{\left(x-\left(x-7\right)\right)\cdot\left(x+x-7\right)}{x-7}\cdot\dfrac{1}{2x-7}-\dfrac{x}{x-7}\)

\(=\dfrac{\left(x-x+7\right)\cdot\left(2x-7\right)}{x-7}\cdot\dfrac{1}{2x-7}-\dfrac{x}{x-7}\)

\(=\dfrac{7}{x-7}-\dfrac{x}{x-7}\)

\(=\dfrac{7-x}{x-7}\)

\(=\dfrac{-\left(x-7\right)}{x-7}\)

\(=-1\)

10 tháng 6 2017

A = \(\left(\dfrac{x}{x^2-49}-\dfrac{x-7}{x^2+7x}\right):\dfrac{2x-7}{x^2+7x}+\dfrac{x}{7-x}\)

A = \(\left(\dfrac{x}{\left(x+7\right)\left(x-7\right)}-\dfrac{x-7}{x\left(x+7\right)}\right):\dfrac{2x-7}{x\left(x+7\right)}+\dfrac{x}{7-x}\)

A = \(\left(\dfrac{x^2-\left(x-7\right)^2}{\left(x+7\right)\left(x-7\right)x}\right):\dfrac{2x-7}{x\left(x+7\right)}-\dfrac{x}{x-7}\)

A = \(\left(\dfrac{x^2-\left(x^2-14x+49\right)}{\left(x+7\right)\left(x-7\right)x}\right):\dfrac{\left(2x-7\right)\left(x-7\right)-\left(x^3+7x^2\right)}{\left(x+7\right)\left(x-7\right)x}\)

A = \(\dfrac{14x-49}{\left(x+7\right)\left(x-7\right)x}:\dfrac{-x^3-5x^2-21x+49}{\left(x+7\right)\left(x-7\right)x}\)

A = \(\dfrac{14x-49}{\left(x+7\right)\left(x-7\right)x}.\dfrac{\left(x+7\right)\left(x-7\right)x}{-x^3-5x^2-21x+49}\)

A = \(\dfrac{14x-49}{-x^3-5x^2-21x+49}\)

20 tháng 6 2017

\(B=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7x-14}+\dfrac{x-2}{3x-6}\right)+\dfrac{3\left(x^2-4\right)}{2x^2-8x+8}\)

\(=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}\right)+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x^2-4x+4\right)}\)

\(=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7\left(x-2\right)}+\dfrac{1}{3}\right)+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)^2}\)

\(=\dfrac{x-2}{x+2}\cdot\dfrac{3\left(5x+10\right)+7\left(x-2\right)}{21\left(x-2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)

\(=\dfrac{1}{x+2}\cdot\dfrac{15x+30+7x-14}{21}+\dfrac{3x+6}{2\left(x-2\right)}\)

\(=\dfrac{22x+16}{21\left(x+2\right)}+\dfrac{3x+6}{2\left(x-2\right)}\)

\(=\dfrac{2\left(x-2\right)\left(22x+16\right)+21\left(x+2\right)\left(3x+6\right)}{42\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{\left(2x-4\right)\left(22x+16\right)+\left(21x+42\right)\left(3x+6\right)}{42\left(x^2-4\right)}\)

\(=\dfrac{44x^2+32x-88x-64+63x^2+126x+126x+252}{42x^2-168}\)

\(=\dfrac{107x^2+196x+188}{42x^2-168}\)

7 tháng 12 2017

1) a) \(\left|7x-5y\right|+\left|2z-3y\right|+\left|xy+yz+xz-2000\right|\ge0\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}7x=5y\\2z=3y\\xy+yz+xz=2000\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}y\\z=\dfrac{3}{2}y\\xy+yz+xz=2000\end{matrix}\right.\)

Ta có: \(xy+yz+xz=2000\)

\(\Rightarrow\dfrac{5}{7}y^2+\dfrac{3}{2}y^2+\dfrac{15}{14}y^2=2000\)

\(\Rightarrow y^2\left(\dfrac{5}{7}+\dfrac{3}{2}+\dfrac{15}{14}\right)=2000\Leftrightarrow\dfrac{23}{7}y^2=2000\)

Tìm \(y\) và suy ra \(x;z\) là được,Bài này nghiệm khá xấu

b) \(\left|3x-7\right|+\left|3x+2\right|+8=\left|7-3x\right|+\left|3x+2\right|+8\ge\left|7-3x+3x+2\right|+8\ge9+8=17\)Dấu "=" xảy ra khi: \(-\dfrac{3}{2}\le x\le\dfrac{7}{3}\)

7 tháng 12 2017

2) a)Ta có: \(\left\{{}\begin{matrix}\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\\\dfrac{12}{\left|y+1\right|+3}\le\dfrac{12}{3}=4\end{matrix}\right.\)

Mà theo đề bài: \(\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}\)

\(\Rightarrow\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}=4\)

\(\Rightarrow\left\{{}\begin{matrix}1\le x\le5\\y=-1\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}\left|y+3\right|+5\ge5\\\dfrac{10}{\left(2x-6\right)^2+2}\le\dfrac{10}{2}=5\end{matrix}\right.\)

Mà theo đề bài: \(\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\)

\(\Rightarrow\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}=5\)

\(\Rightarrow\left\{{}\begin{matrix}y=-3\\x=3\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\\\dfrac{6}{\left|y+3\right|+3}\le\dfrac{6}{3}=2\end{matrix}\right.\)

Mà theo đề bài: \(\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}\)

\(\Rightarrow\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}=2\)

\(\Rightarrow\left\{{}\begin{matrix}1\le x\le3\\y=-3\end{matrix}\right.\)

4 tháng 2 2022

\(i.\dfrac{\left(2x+1\right)^2}{5}-\dfrac{\left(x-1\right)^2}{3}=\dfrac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\dfrac{4x^2+4x+1}{5}-\dfrac{x^2-2x+1}{3}=\dfrac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\dfrac{12x^2+12x+3}{15}-\dfrac{5x^2-10x+5}{15}=\dfrac{7x^2-14x-5}{15}\)

\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)

\(\Leftrightarrow36x=-3\)

\(\Leftrightarrow x=-\dfrac{1}{12}\)

4 tháng 2 2022

\(k.x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x-\dfrac{1-2x}{3}}{5}\)

\(\Leftrightarrow\dfrac{15x}{15}+\dfrac{10x+x-1}{15}=\dfrac{15}{15}-\dfrac{9x-1+2x}{15}\)

\(\Leftrightarrow15x+9x-1=14-7x\)

\(\Leftrightarrow31x=15\)

\(\Leftrightarrow x=\dfrac{15}{31}\)