K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMQN và ΔMQP có

MQ chung

\(\widehat{NMQ}=\widehat{PMQ}\)

NM=PM

Do đó: ΔMNQ=ΔMPQ

b: Ta có: ΔMNP cân tại M

mà MQ là phân giác

nên MQ là đường cao

c: NP=6cm nên NQ=3cm

=>MQ=4cm

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm 

9 tháng 4 2017

a) xét tam giác MHN và tam giác MHP có

         \(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)

         MN = MP ( tam giác MNP cân tại M)

         MH chung

=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)

b) vì tam giác MHN = tam giác MHP (câu a)

=> \(\widehat{M1}\)\(\widehat{M2}\)(2 góc tương ứng)

=> MH là tia phân giác của \(\widehat{NMP}\)

9 tháng 4 2017

bạn tự vẽ hình nhé

a.

vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)

Xét tam giác MHN và tam giác MHP

có: MN-MP(CMT)

 \(\widehat{N}\)=\(\widehat{P}\)(CMT)

MH là cạnh chung

\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)

=> Tam giác MHN= Tam giác MHP(ch-gn)

=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG)          (1)

và NH=PH( 2 cạnh tương ứng)

mà H THUỘC NP=> NH=PH=1/2NP                               (3)

b. Vì H năm giữa N,P

=> MH nằm giữa MN và MP                                           (2)

Từ (1) (2)=> MH là tia phân giác của góc NMP

c. Từ (3)=> NH=PH=1/2.12=6(cm)

Xét tam giác MNH có Góc H=90 độ

=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)

hay \(10^2=6^2+MH^2\)

=>\(MH^2=10^2-6^2\)

\(MH^2=64\)

=>MH=8(cm)

a: NP^2=MN^2+MP^2

=>ΔMNP vuông tại M

b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

=>DM=DE