K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì n lẻ nên n=2k+1

\(n^4-10n^2+9\)

\(=\left(n^2-1\right)\left(n^2-9\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\cdot\left(2k-2\right)\cdot\left(2k+4\right)\)

\(=16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì k-1;k+1;k;k+2 là bốn số liên tiếp

nên \(\left(k-1\right)\cdot k\cdot\left(k+1\right)\cdot\left(k+2\right)⋮4!=24\)

\(\Leftrightarrow16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮384\)

4 tháng 5 2018

Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do 5n(n-1)(n+1) có dạng 5k. Do đó chia hết cho 5.

Lại có: n ; n-1 ; n+1 là 3 số tự nhiên liên tiếp nên tích chúng sẽ tồn tại thưa số chia hết cho 3, chia hết cho 2.

Do đó5n(n-1)(n+1) \(⋮30\)

Mặt khác: n(n-1)(n+1)(n-2(n+2) là tích 5 số tự nhiên liên tiêp, do đó tích của chúng có tồn tại 1 thừa số chi hết cho, 5, một thwuaf số chia hết cho 3, một thưa só chia hét cho 2.

Do đó n5-n chia hết cho 30

4 tháng 5 2018

\(A=n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Đặt n = 2k+1 Thay vào A có: \(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

=> \(A⋮16\)

Lại có k;k-1;k=1;k=2 là 3 số nguyên liên tiếp do đó tích chung số chia hét cho 2,3,4(3 số nguyên tố cùng nhau). Nên A chia hết 24

=> A\(A⋮384\)

5 tháng 3 2018

Ta có

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)+\(5n\left(n-1\right)\left(n+1\right)\)

--Vì \(n\left(n+1\right)\left(n+2\right)\left(n-2\right)\left(n-1\right)\)là tích của 5 số nguyên liên tiếp

=> \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) chia hết cho 2;3;5

=> \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) chia hết cho 30 (*)

-- vì \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số nguyên liên tiếp

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\) chia hết cho 2; 3

\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮6\)

=> \(5n\left(n-1\right)\left(n+1\right)⋮5.6=30\) (**)

từ * và ** => \(n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮30\)

hay \(n^5-n⋮30\left(đpcm\right)\)

like nhoa !! banh

29 tháng 8 2019

Chứng minh A= 10 ^n + 18n - 1 chia hết cho 27

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

19 tháng 9 2019

không ai cứu cậu đâu :))

19 tháng 2 2018

tim max duoc thoi nhe ban

8 tháng 5 2018

Cứ tìm đi

Okɑy

2 tháng 3 2018

Biến đổi thành : \(n\left(n+2\right)\left(n+4\right)\) rồi thay n=2k vào ta được 8k(k+1)(k+2)

3 tháng 10 2020

Đề là chứng minh N < 1/4 sẽ đúng hơn

Ta có :

\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(\Rightarrow2^2.N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

Ta lại có :

\(4N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}\)

\(\Rightarrow N< \left(1-\frac{1}{n}\right):4=\frac{1}{4}\left(1-\frac{1}{n}\right)\)

Mà \(n\in N;n\ge2\)=> 1 -\(\frac{1}{n}\)< 1

=> \(N< \frac{1}{4}\left(1-\frac{1}{n}\right)< \frac{1}{4}\)

=> \(N< \frac{1}{4}\)( đpcm )

4 tháng 10 2020

Thank you very much

5 tháng 3 2018

48 =3.16 =3.2.8

cần c/m chia hết ch 3.2.8

\(\left\{{}\begin{matrix}A=n^3+6n^2+8n\\n=2k;k\in Z\end{matrix}\right.\)

\(A=8.k^3+24k^2+16k=8k\left(k^2+3k+2\right)\)

\(A=8k\left[k^2-1+3k+3\right]=8k\left(k-1\right)\left(k+1\right)+8.3.k\left(k+1\right)\)

\(A=8k\left(k+1\right)\left(k+2\right)\)

có k(k+1)(k+2) ba số nguyên liên tiếp => chia hết cho 6

=> A chia hết cho 8.6 =48 => dpcm