K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

a) \(n^2+2n-4=n^2+2n-15+11=\left(n^2+5n-3n-15\right)+11=\left(n-3\right)\left(n+5\right)+11\)

để \(n^2+2n-4\) chia hết cho 11 <=> (n - 3).(n +5) chia hết cho 11 <=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)

n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)

n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)

vậy với n = 11k + 3 hoặc n = 11k' - 5 thì \(n^2+2n-4⋮11\)

b.

\(n^3-2=\left(n^3-8\right)+6=\left(n-3\right)\left(n^2+2n+4\right)+6\)

để \(n^3-2⋮n-2\) <=> 6 chia hết cho n-2 <=> n - 2 ∈ Ư(6) = {-6;-3;-2;-1;1;2;3;6}

Tương ứng n ∈ {-4; -1; 0; 1; 3; 4; 5; 8}

Vậy...

7 tháng 10 2021

\(1,\)

\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)

Với \(n=k+1\)

\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)

Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)

Theo pp quy nạp ta được đpcm

\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)

Với \(n=k+1\)

\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)

Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)

Theo pp quy nạp ta được đpcm

7 tháng 10 2021

\(1,\)

\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)

Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)

\(d,D=1^n+2^n+5^n+8^n\)

Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)

2 tháng 3 2018

\(C=\dfrac{A}{B}=\dfrac{n^3+2n^2-3n+2}{n^2-n}=\dfrac{\left(n^3-n^2\right)+3n^2-3n+2}{n^2-n}=\dfrac{n\left(n^2-n\right)+3\left(n^2-n\right)+2}{n^2-n}\)\(C=n+3+\dfrac{2}{n^2-n}\)

\(n,C\in Z\Rightarrow\dfrac{2}{n^2-n}\in Z\Rightarrow n^2-n=\left\{-2;-1;1;2\right\}\)

n^2 -n là hai số chẵn

\(\left[{}\begin{matrix}n^2-n=-2\\n^2-n=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}n^2-n=-2\left(vn\right)\\n^2-n=2\left[{}\begin{matrix}n_1=-1\\n_2=2\end{matrix}\right.\end{matrix}\right.\)

4 tháng 5 2018

Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do 5n(n-1)(n+1) có dạng 5k. Do đó chia hết cho 5.

Lại có: n ; n-1 ; n+1 là 3 số tự nhiên liên tiếp nên tích chúng sẽ tồn tại thưa số chia hết cho 3, chia hết cho 2.

Do đó5n(n-1)(n+1) \(⋮30\)

Mặt khác: n(n-1)(n+1)(n-2(n+2) là tích 5 số tự nhiên liên tiêp, do đó tích của chúng có tồn tại 1 thừa số chi hết cho, 5, một thwuaf số chia hết cho 3, một thưa só chia hét cho 2.

Do đó n5-n chia hết cho 30

4 tháng 5 2018

\(A=n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Đặt n = 2k+1 Thay vào A có: \(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

=> \(A⋮16\)

Lại có k;k-1;k=1;k=2 là 3 số nguyên liên tiếp do đó tích chung số chia hét cho 2,3,4(3 số nguyên tố cùng nhau). Nên A chia hết 24

=> A\(A⋮384\)

NV
5 tháng 10 2019

\(x^2+x+1\) là số chính phương

\(\Rightarrow x^2+x+1=k^2\)

\(\Rightarrow4x^2+4x+1+3=4k^2\)

\(\Rightarrow4k^2-\left(2x+1\right)^2=3\)

\(\Rightarrow\left(2k+2x+1\right)\left(2k-2x-1\right)=3\)

Phương trình ước số cơ bản, bạn tự giải

5 tháng 10 2019

số tự nhiên