Chứng minh:
a) \(\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)
b) \(\left(x^{10}-10x+9\right)⋮\left(x^2+1\right)\)
c) \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n+2}⋮\left(x^2+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vê trái:
\(=\frac{2}{\left(x-1\right)\left(x+1\right)}+\frac{4}{\left(x-2\right)\left(x+2\right)}+...+\frac{20}{\left(x-10\right)\left(x+10\right)}\)
\(=\frac{\left(x+1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}\)
\(=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x-2}-\frac{1}{x+2}+...+\frac{1}{x-10}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\)
Vế phải:
\(=\frac{\left(x+1\right)-\left(x-10\right)}{\left(x-10\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-9\right)}{\left(x-9\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-1\right)}{\left(x-1\right)\left(x+10\right)}\)
\(=\frac{1}{x-10}-\frac{1}{x+1}+\frac{1}{x-9}-\frac{1}{x+2}+...+\frac{1}{x-1}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\) = vế phải
=> đpcm
T ko biết làm, chỉ hỏi liên thiên thôi :)))
Hủ phải không???? OvO Dưa Trong Cúc
c) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2010=0\)
\(\Leftrightarrow x=0+2010\)
\(\Rightarrow x=2010\)
Vậy \(x=2010.\)
Mình chỉ làm câu c) thôi nhé.
Chúc bạn học tốt!
Đặt \(A=x^{20}+x^{10}+1\)
\(x^{50}+x^{10}+1\)
\(=x^{50}-x^{20}+A\)
\(=x^{20}\left(x^{30}-1\right)+A\)
\(=x^{20}\left(x^{10}-1\right)A+A\)
\(=\left(x^{30}-x^{20}+1\right)A\)
mà \(\left(x^{30}-x^{20}+1\right)A⋮A\)
\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)