K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

(1+23)+(2+24)+...+(28+211)

9+2(1+23)+...+28(1+23)

9(1+2+...+28) chia hết cho 9

=>( 2^0+2^1+2^2 + ...+2^11) chia hết cho 9

 

18 tháng 10 2015

c)(5+52)+(53+54)+...+(599+5100)

5(1+5)+53(1+5)+...+599(1+5)

6(5+53+...+599) chia hết cho 3

18 tháng 10 2015

a) Đặt A= \(1+2+2^2+...+2^7=\left(1+2\right)\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)

                                               \(=3+2^2\left(1+2\right)+...+2^6\left(1+2\right)\)

                                                \(=3\left(1+2^2+...+2^6\right)\)

                    Vậy A chia hết ho 3

Câu b,c tương tư

26 tháng 9 2015

a) 5+52+53+54+...+5100

= (5+52)+(53+54)+...+(599+5100)

= 30+52.(5+52)+...+598.(5+52)

= 30+52.30+...+598.30

= 30.(1+52+...+598)

Vì 30 chia hết cho 10

=> 30.(1+52+...+598) chia hết cho 10

=> 5+52+53+...+5100 chia hết cho 10

1 tháng 10 2019

Bài 1:

Có: \(A=2^1+2^2+2^3+2^4+...+2^{2010}\\ A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(2^1+2^2+2^3\right)+2^3\left(2^1+2^2+2^3\right)+...+2^{2007}\left(2^1+2^2+2^3\right)\\ A=\left(2^1+2^2+2^3\right)\left(1+2^3+...+2^{2007}\right)\\ A=14\left(1+2^3+...+2^{2007}\right)⋮7\)

Có: \(B=5+5^2+5^3+5^4+...+5^{99}+5^{100}\\ B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\\ B=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\\ B=\left(5+5^2\right)\left(1+5^2+...+5^{98}\right)\\ B=30\left(1+5^2+...+5^{98}\right)⋮6\)

Bài 2:

Gọi số tổng quát là \(\overline{ab}\) (ĐK: \(\overline{ab}\in N\))

Có: \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)

Vậy ta được đpcm

1 tháng 10 2019

Bài 1:

A= 2^1 + 2^2 + 2^3 +...+ 2^2010 A= (2^1 + 2^2 + 2^3) + ... + (2^2008 + 2^2009 + 2^2010) A= 2.( 1 + 2 + 2^2) + ... + 2^2008.(1 + 2 + 2^2) A= 2.7 + ... + 2^2008. 7 => 2^1 + 2^2 + 2^3 +...+ 2^2010 chia hết cho 7 => A chia hết cho 7
2 tháng 9 2019

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)

\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)

2 tháng 9 2019

\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)

\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)

\(5^8-5^7-1\equiv5\left(mod7\right):v\)

9 tháng 10 2017

a) \(\left(1+2+2^2+...+2^7\right)\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)

\(=\left(1+2\right)+2^2.\left(1+2\right)+...+2^6.\left(1+2\right)\)

\(=3+2^2.3+...+2^6.3\)

\(=3.\left(1+2^2+...+2^6\right)⋮3\left(đpcm\right)\)

9 tháng 10 2017

a) Đặt A = 1 + 2 + 22 + 23 + ... + 27

Ta có:

A = 1 + 2 + 22 + 23 + ... + 27

\(\Rightarrow\)2A = 2 + 22 + 23 + 24 + ... + 28

\(\Rightarrow\)A = 28 - 1 = 255

Vì 255\(⋮\)3\(\Rightarrow\)2 + 22 + 23 + 24 + ... + 28\(⋮\)3

\(\Rightarrow\)ĐPCM