Tính tích phân của hàm số sau
\(\int_0^{\dfrac{\pi}{2}}\dfrac{sinx}{\left(sinx+cosx\right)^3}dx\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
C1: \(a.sinx+b.cosx=c\)
Pt vô nghiệm \(\Leftrightarrow a^2+b^2< c^2\)
Bạn áp dụng công thức trên sẽ tìm ra m
C2: (Bạn vẽ đường tròn lượng giác sẽ tìm được)
Hàm số \(y=sinx\) đồng biến trên khoảng \(\left(-\dfrac{\pi}{2}+k2\pi;\dfrac{\pi}{2}+k2\pi\right)\) ( góc phần tư thứ IV và I)
Hàm nghịch biến trên khoảng \(\left(\dfrac{\pi}{2}+k2\pi;\dfrac{3\pi}{2}+k2\pi\right)\)( góc phần tư thứ II và III)
Ý A, khoảng nằm trong góc phần tư thứ III và thứ IV => Hàm nghịch biến sau đó đồng biến
Ý B, khoảng nằm trong góc phần tư thứ I và thứ II => hàm đồng biến sau đó nghịch biến
Ý C, khoảng nằm trong góc phần tư thứ IV; I ; II => hàm đồng biền sau đó nghịch biến
Ý D, khoảng nằm trong phần tư thứ IV ; I=> hàm đồng biến
Đ/A: Ý D
(Toi nghĩ thế)
1.
\(I=\int\dfrac{cot^2x}{sin^6x}dx=\int\dfrac{cot^2x}{sin^4x}.\dfrac{1}{sin^2x}=\int cot^2x\left(1+cot^2x\right)^2.\dfrac{1}{sin^2x}dx\)
Đặt \(u=cotx\Rightarrow du=-\dfrac{1}{sin^2x}dx\)
\(I=-\int u^2\left(1+u^2\right)^2du=-\int\left(u^6+2u^4+u^2\right)du\)
\(=-\dfrac{1}{7}u^7+\dfrac{2}{5}u^5+\dfrac{1}{3}u^3+C\)
\(=-\dfrac{1}{7}cot^7x+\dfrac{2}{5}cot^5x+\dfrac{1}{3}cot^3x+C\)
2.
\(I=\int\left(e^{sinx}+cosx\right).cosxdx=\int e^{sinx}.cosxdx+\int cos^2xdx\)
\(=\int e^{sinx}.d\left(sinx\right)+\dfrac{1}{2}\int\left(1+cos2x\right)dx\)
\(=e^{sinx}+\dfrac{1}{2}x+\dfrac{1}{4}sin2x+C\)
2.
$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$
$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$
Vì: $0\leq \sin ^22x\leq 1$
$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$
Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$
3.
$0\leq |\sin x|\leq 1$
$\Rightarrow 3\geq 3-2|\sin x|\geq 1$
Vậy $y_{\min}=1; y_{\max}=3$
Lời giải:
Ta có:
\(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin x}{(\sin x+\cos x)^3}dx+\int ^{\frac{\pi}{4}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx\)
\(=A+B\)
Xét riêng rẽ:
\(A=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin^3 x}{(\sin x+\cos x)^3}.\frac{dx}{\sin ^2x}=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{\left(\frac{\sin x+\cos x}{\sin x}\right)^3}d(-\cot x)\)
\(=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{(\cot x+1)^3}d(-\cot x)=-\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{d(\cot x+1)}{(\cot x+1)^3}\)
\(=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{4}\end{matrix}\right|\frac{1}{2(\cot x+1)^2}=\frac{3}{8}\)
\(B=\int ^{\frac{\pi}{4}}_{0}\frac{\sin x+\cos x-\cos x}{(\sin x+\cos x)^3}dx\)\(=\int ^{\frac{\pi}{4}}_{0}\frac{ 1}{(\sin x+\cos x)^2}dx-\int ^{\frac{\pi}{4}}_{0}\frac{\cos x}{(\sin x+\cos x)^3}dx\)
\(=\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos x}\right)^2}.\frac{dx}{\cos ^2x}-\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos^3 x}\right)^3}.\frac{dx}{\cos ^2x}\)
\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^3}\)
\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^3}\)
\(=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{-1}{\tan x+1}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{1}{2(\tan x+1)^2}=\frac{1}{8}\)
Do đó: \(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}\)
Sở dĩ phải chia tích phân thành tổng nhỏ như vậy là do khi ta thực hiện chia sin x xuống dưới mẫu thì hàm số không liên tục trong đoạn \([\frac{\pi}{2}; 0]\)
Dạ em cảm ơn ạ!