K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

Trên tia đối của PB lấy H sao cho BP = PH

ΔBPC và ΔHPD có:

BP = HP (cách vẽ)

\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)

PC = PD (gt)

Do đó, ΔBPC=ΔHPD(c.g.c)

=> BC = DH (2 cạnh t/ứng)

\(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD

ΔABH có: M là trung điểm của AB (gt)

P là trung điểm của BH (vì HP = BP)

Do đó MP là đường trung bình của ΔABH

\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH 

\(\Rightarrow2MP=AH\)

Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)

\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))

\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)

Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)

Do đó, \(AD+DH=AH\)

=> A,D,H thẳng hàng

Mà HD // BC (cmt) nên AD // BC

Tương tự: AB // CD

Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)

Do đó, ABCD là hình bình hành 

 

14 tháng 5 2017

a) Áp dụng hệ quả định lý thales:

\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)

Áp dụng BĐT bunyakovsky:

\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)

\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)

dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)

b) chưa nghĩ :v

15 tháng 6 2017

Thấy \(a+b+c+d=0\Rightarrow\left\{{}\begin{matrix}a=-b-c-d\\b=-a-c-d\\c=-a-b-d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab-cd=-b^2-bc-bd-cd=\text{-(b + c) (b + d)=(a+d)(b+d)}\\bc-ad=-ca-c^2-cd-ad=\text{-(a + c) (c + d)=(b+d)(c+d)}\\ca-bd=-a^2-ab-ad-bd=\text{-(a + b) (a + d)}=\left(c+d\right)\left(a+d\right)\end{matrix}\right.\)\(\Rightarrow\)x=(a+d)(b+d)(c+d)

29 tháng 3 2021

Lấy \(N'\) đối xứng với \(N\) qua \(I\Rightarrow N'=\left(3;\dfrac{5}{3}\right)\)

Phương trình đường thẳng AB: \(\dfrac{x-2}{3-2}=\dfrac{y-\dfrac{4}{3}}{\dfrac{5}{3}-\dfrac{4}{3}}\Leftrightarrow x-3y+2=0\)

Phương trình đường thẳng BD: \(ax+by-3a-3b=0\left(a^2+b^2\ne0\right)\)

\(\Rightarrow AB=\sqrt{BI^2+AI^2}=\sqrt{BI^2+4BI^2}=\sqrt{5}BI\)

\(\Rightarrow cosABD=\dfrac{BI}{AB}=\dfrac{1}{\sqrt{5}}=\dfrac{\left|a-3b\right|}{\sqrt{10.\left(a^2+b^2\right)}}\)

\(\Leftrightarrow2\left(a^2+b^2\right)=\left(a-3b\right)^2\)

\(\Leftrightarrow\left(a-b\right)\left(a+7b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-7b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}BD:x+y-6=0\\BD:7x-y-18=0\end{matrix}\right.\)

a) Ta có: MN là đường trung bình của hình thang ABCD(AB//CD)

nên MN//AB//CD và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)

hay EN//AB và MF//AB

Xét ΔCAB có 

N là trung điểm của BC(gt)

NE//AB(cmt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔCAB có 

E là trung điểm của AC(cmt)

N là trung điểm của BC(gt)

Do đó: EN là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)

nên \(EN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔDAB có 

M là trung điểm của AD(gt)

MF//AB(cmt)

Do đó: F là trung điểm của BD(Định lí 1 về đường trung bình của tam giác)

Xét ΔDAB có 

M là trung điểm của AD(gt)

F là trung điểm của BD(cmt)

Do đó: MF là đường trung bình của ΔDAB(Định nghĩa đường trung bình của tam giác)

nên \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra MF=EN

\(\Leftrightarrow MF+FE=EN+FE\)

\(\Leftrightarrow ME=FN\)(đpcm)

b) Ta có: \(EN=MF=\dfrac{AB}{2}\)(cmt)

nên \(EN=MF=\dfrac{6}{2}=3\left(cm\right)\)

Ta có: \(MN=\dfrac{AB+CD}{2}\)(cmt)

nên \(MN=\dfrac{6+8}{2}=\dfrac{14}{2}=7\left(cm\right)\)

Ta có: MF+FE+EN=MN

\(\Leftrightarrow EF=MN-MF-EN=7-3-3=1\left(cm\right)\)

Vậy: EF=1cm

13 tháng 6 2018

A B C D O M N K H E F I J T P

a) Ta có: Tứ giác ACBD nội tiếp (O;R) có 2 đường chéo là 2 đường kính vuông góc với nhau.

Nên tứ giác ACBD là hình vuông.

Xét tứ giác ACMH: ^ACM=^ACB=900; ^AHM=900

=> Tứ giác ACMH nội tiếp đường tròn

Do tứ giác ACBD là 1 hình vuông nên ^BCD=1/2.CAD=450 

=> ^BCD=^MAN hay ^MCK=^MAK => Tứ giác ACMK nội tiếp đường tròn.

b) Gọi giao điểm của tia AE với tia tiếp tuyến BF là I. AF gặp MH tại J.

Ta có: Điểm E nằm trên (O) có đg kính AB => ^AEB=900

=> \(\Delta\)BEI vuông tại E. Dễ thấy \(\Delta\)BFE cân tại F => ^FEB=^FBE

Lại có: ^FEB+^FEI=900 => ^FBE+^FEI=900. Mà ^FBE+^FIE=900

Nên ^FEI=^FIE => \(\Delta\)EFI cân tại F => EF=IF. Mà EF=BF => BF=IF

Theo hệ quả của ĐL Thales ta có: \(\frac{MJ}{IF}=\frac{HJ}{BF}=\frac{AJ}{AF}\)=> MJ=HJ (Do IF=BF)

=> J là trung điểm của HM  => Đpcm.

c) Trên tia đối của tia DB lấy T sao cho DT=CM.

Gọi P là hình chiếu của A xuống đoạn MN.

Dễ dàng c/m \(\Delta\)ACM=\(\Delta\)ADT (c.g.c) => ^CAM=^DAT và AM=AT

mà ^CAM phụ ^MAD => ^DAT+^MAD=900 => ^MAT=900

=> ^MAN=^TAN=1/2.^MAT=450.=> \(\Delta\)MAN=\(\Delta\)TAN (c.g.c)

=> ^AMN=^ATN (2 góc tương ứng)  hay ^AMP=^ATD

=> \(\Delta\)APM=\(\Delta\)ADT (Cạnh huyền góc nhọn) => AD=AP (2 cạnh tương ứng).

Mà AD có độ dài không đổi (Vì AD=căn 2 . R) => AP không đổi.

Suy ra khoảng cách từ điểm A đến đoạn MN là không đổi

=> MN tiếp xúc với đường tròn tâm A cố định bán kính AD=căn 2.R.

Vậy...

 ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ 

Sắp đến Tết rùi nè ae.Zui nhểy!Đứa nào đỗ nhớ khao tao nhá!

  • Tên: ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ 
  • Đang học tại: Trường THCS Lập Thạch
  • Địa chỉ: Huyện Lập Thạch - Vĩnh Phúc
  • Điểm hỏi đáp: 16SP, 0GP
  • Điểm hỏi đáp tuần này: 1SP, 0GP
  • Thống kê hỏi đáp