K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
15 tháng 6 2019

+ \(\left\{{}\begin{matrix}AB//NF\\CD//ME\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{OMB}=\widehat{ONF}\\\widehat{OME}=\widehat{ONC}\end{matrix}\right.\)

\(\Rightarrow360^o-\left(\widehat{ONF}+\widehat{ONC}\right)=360^o-\left(\widehat{OMB}+\widehat{OME}\right)\)

\(\Rightarrow\widehat{FNC}=\widehat{EMB}\)

+ AB // NF \(\Rightarrow\frac{NF}{MB}=\frac{ON}{MO}\)

+ CD // ME \(\Rightarrow\frac{NC}{ME}=\frac{ON}{OM}=\frac{NF}{MB}\)

\(\Rightarrow\frac{NC}{NF}=\frac{ME}{MB}\)

+ ΔBME ∼ ΔFNC ( c.g.c )

\(\Rightarrow\widehat{BEM}=\widehat{FCN}\)

+ ME // CD \(\Rightarrow\widehat{MEA}=\widehat{ACN}\)

\(\Rightarrow\widehat{MEA}+\widehat{BEM}=\widehat{ACN}+\widehat{NCF}\)

\(\Rightarrow\widehat{BEA}=\widehat{ACF}\) => BE // CF

28 tháng 1 2022

a) Xét tam giác ABC có: OE // BC (gt).

\(\Rightarrow\) \(\dfrac{AE}{AB}=\dfrac{AO}{AC}\left(Talet\right).\left(1\right)\)

Xét tam giác ACD có: OF // CD (gt).

\(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AO}{AC}\left(Talet\right).\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AE}{AB}.\)

Xét tam giác ABD có: \(\dfrac{AF}{AD}=\dfrac{AE}{AB}\left(cmt\right).\)

\(\Rightarrow\) EF // BD (định lý Talet đảo).